Half-Angle Trigonometric Identities: Questions and Solutions

This page shows how to compute the exact and approximate values of trigonometric functions involving half-angles using the half-angle formulas. Worked examples are followed by practice exercises and their complete solutions.


Review of the Half-Angle Formulas

The half-angle identities are:

\[ \sin\left(\frac{\theta}{2}\right)=\pm\sqrt{\frac{1-\cos\theta}{2}} \] \[ \cos\left(\frac{\theta}{2}\right)=\pm\sqrt{\frac{1+\cos\theta}{2}} \] \[ \tan\left(\frac{\theta}{2}\right)=\pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \] \[ \tan\left(\frac{\theta}{2}\right)=\frac{\sin\theta}{1+\cos\theta} \qquad \tan\left(\frac{\theta}{2}\right)=\frac{1-\cos\theta}{\sin\theta} \]

Notes

  1. The sign ± depends on the quadrant in which \( \frac{\theta}{2} \) lies.
  2. Three equivalent formulas exist for \( \tan\left(\frac{\theta}{2}\right) \).

Examples with Solutions

Example 1

Given \( \cos\theta=-0.9 \) and \( \theta \) lies in Quadrant III:

  1. Determine the quadrant of \( \frac{\theta}{2} \) and the signs of \( \sin\left(\frac{\theta}{2}\right) \) and \( \cos\left(\frac{\theta}{2}\right) \).
  2. Find \( \sin\left(\frac{\theta}{2}\right) \).
  3. Find \( \cos\left(\frac{\theta}{2}\right) \).

Solution

Since \( \theta \) is in Quadrant III:

\[ \pi<\theta<\frac{3\pi}{2} \quad\Rightarrow\quad \frac{\pi}{2}<\frac{\theta}{2}<\frac{3\pi}{4} \]

Thus \( \frac{\theta}{2} \) lies in Quadrant II, so \( \sin\left(\frac{\theta}{2}\right)>0 \) and \( \cos\left(\frac{\theta}{2}\right)<0 \).

b) Compute \( \sin\left(\frac{\theta}{2}\right) \)

\[ \sin\left(\frac{\theta}{2}\right) =\sqrt{\frac{1-\cos\theta}{2}} =\sqrt{\frac{1+0.9}{2}} =\sqrt{\frac{19}{20}} \approx0.97467 \]

c) Compute \( \cos\left(\frac{\theta}{2}\right) \)

\[ \cos\left(\frac{\theta}{2}\right) =-\sqrt{\frac{1+\cos\theta}{2}} =-\sqrt{\frac{0.1}{2}} =-\frac{\sqrt{5}}{10} \approx-0.22360 \]

Example 2

Given \( \tan\theta=-4 \) and \( \theta \) lies in Quadrant II, find \( \tan\left(\frac{\theta}{2}\right) \).

Solution

\[ \tan\left(\frac{\theta}{2}\right)=\frac{\sin\theta}{1+\cos\theta} \]

Using a reference triangle with opposite side 4 and adjacent side 1:

\[ \sin\theta=\frac{4}{\sqrt{17}},\quad \cos\theta=-\frac{1}{\sqrt{17}} \] \[ \tan\left(\frac{\theta}{2}\right) =\frac{4}{\sqrt{17}-1} \approx1.28077 \]

Example 3

Given \( \sin\theta=-0.2 \) and \( \theta \) lies in Quadrant IV:

  1. Determine the signs of \( \sec\left(\frac{\theta}{2}\right) \), \( \csc\left(\frac{\theta}{2}\right) \), and \( \cot\left(\frac{\theta}{2}\right) \).
  2. Find \( \sec\left(\frac{\theta}{2}\right) \).
  3. Find \( \csc\left(\frac{\theta}{2}\right) \).
  4. Find \( \cot\left(\frac{\theta}{2}\right) \).

Solution

\[ \frac{3\pi}{4}<\frac{\theta}{2}<\pi \]

So \( \frac{\theta}{2} \) is in Quadrant II.

\[ \cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{0.96} \] \[ \sec\left(\frac{\theta}{2}\right) =-\sqrt{\frac{2}{1+\sqrt{0.96}}} \approx-1.00508 \] \[ \csc\left(\frac{\theta}{2}\right) =\sqrt{\frac{2}{1-\sqrt{0.96}}} \approx9.94936 \] \[ \cot\left(\frac{\theta}{2}\right) =-\sqrt{\frac{1+\sqrt{0.96}}{1-\sqrt{0.96}}} \approx-9.89897 \]

Exercises

  1. Given \( \tan\theta=4 \) in Quadrant III, find \( \sin\left(\frac{\theta}{2}\right) \).
  2. Given \( \csc\theta=-5 \) in Quadrant IV, find \( \tan\left(\frac{\theta}{2}\right) \).

Solutions to Exercises


Solutions to the Above Exercises


  1. Use the formula given in A above to write \[ \qquad \sin \left(\dfrac{\theta}{2} \right) = \pm \sqrt {\dfrac{1 - \cos \theta} {2}} \] We need to find the quadrant of \( \dfrac{\theta}{2} \) to select the + or - in the formula and we also need to determine \( \cos \theta \).
    \( \theta \) is in quadrant 3 (given) may be written using an inequality as \[ \qquad \pi \lt \theta \lt \dfrac{3 \pi}{2} \] Divide all terms in the above inequality by \( 2 \) to obtain \[ \qquad \dfrac{\pi}{2} \lt \dfrac{ \theta}{2} \lt \dfrac{3 \pi}{4} \] The above means that \( \dfrac{ \theta}{2} \) is in quadrant 2 and therefore \( \sin \left(\dfrac{\theta}{2} \right) \) is positive and given by \[ \qquad \sin \left(\dfrac{\theta}{2} \right) = \sqrt {\dfrac{1 - \cos \theta} {2}} \quad (I) \] Given that \( \qquad \tan \theta = 4 \), we can write \[ \qquad \tan(\theta) = 4 = \dfrac{4}{1} = \dfrac{\text{ Opposite Side}}{\text{ Adjacent Side }} \] and write that \[ \text{ Opposite Side} = 4 \) and \( \text{ Adjacent Side } = 1 \] Calculate the Hypotenuse of the right triangle using the Pythagorean theorem \[ \qquad \text{Hypotenuse} = \sqrt { \text{Adjacent Side }^2 + \text{Opposite Side}^2 } = \sqrt{1^2+4^2} = \sqrt{17} \] We now determine \( \cos \theta \) \[ \qquad |\cos \theta| = \dfrac{\text{ Adjacent Side }}{\text{ Hypotenuse }} = \dfrac{1}{ \sqrt{17} } \] Since \( \theta \) is in quadrant 3, \( \cos \theta \) is negatine and therefore \[ \cos \theta = - \dfrac{1}{ \sqrt{17}} \] Substitute the value of \( \cos \theta \) in \( (I) \) to obtain \[ \qquad \sin \left(\dfrac{\theta}{2} \right) = \sqrt {\dfrac{1 + \dfrac{1}{ \sqrt{17}}} {2}} \approx 0.78820 \]

  2. Given \( \csc \theta = - 5 \), we write \[ \csc \theta = \dfrac{1}{\sin \theta} = - 5 \] hence \[ \sin \theta = - \dfrac{1}{5} \] Use the identity \( \cos^2 \theta = 1 - \sin^2 \theta \) to claculate \( \cos \theta \) \[ \cos \theta = \pm \sqrt {1 - \sin^2 \theta} \] Since \( \theta \) is in quadrant 4 (given) , \( \cos \theta \) is positive and therefore \[ \cos \theta = \sqrt {1 - \left( - \dfrac{1}{5} \right)^2 } = \dfrac{2\sqrt{6}}{5} \] We now use formula C2 given above to write \[ \quad \tan \left(\dfrac{\theta}{2} \right) = \dfrac{\sin \theta}{1 + \cos \theta} \] Substitute \( \sin \theta \) and \( \cos \theta \) by their values to obtain \[ \quad \tan \left(\dfrac{\theta}{2} \right) = \dfrac{- \dfrac{1}{5}}{1 + \dfrac{2\sqrt{6}}{5}} \] Which may be simplified to \[ \quad \tan \left(\dfrac{\theta}{2} \right) = -\dfrac{1}{5+2\sqrt{6}} \approx -0.10102 \]


More References