This page contains multiple-choice questions on evaluating trigonometric functions of multiple angles. Key formulas are provided first, followed by worked solutions for each question.
Common identities used to evaluate trigonometric functions of multiple angles:
\[ \sin(2x) = 2 \sin x \cos x \] \[ \sin(3x) = 3\sin x - 4\sin^3 x = \sin x(4\cos^2 x - 1) \] \[ \sin(4x) = 4\sin x \cos x(1 - 2\sin^2 x) \] \[ \cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 \] \[ \cos(3x) = 4\cos^3 x - 3\cos x \] \[ \cos(4x) = 8\cos^4 x - 8\cos^2 x + 1 \] \[ \tan(2x) = \frac{2\tan x}{1 - \tan^2 x} \] \[ \tan(3x) = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \]If \( \sin t = 0.6 \) and \( \cot t > 0 \), find \( \sin(2t) \).
a) −0.96
b) 0.48
c) 0.96
d) −0.48
If \( \cos t = 0.8 \), find \( \cos(2t) \).
a) 0.28
b) 0.4
c) 1.0
d) 1.6
If \( \tan x = 5 \), find \( \tan(2x) \).
a) 10
b) −5/12
c) 1/10
d) 5/12
If \( \cos t = \frac{3}{4} \) and \( \sin t < 0 \), find \( \sin(3t) \).
a) \( \frac{\sqrt{7}}{16} \)
b) \( -\frac{5\sqrt{7}}{16} \)
c) \( -\frac{3\sqrt{7}}{4} \)
d) \( \frac{5\sqrt{7}}{16} \)
If \( \cos t = \frac{1}{3} \) and \( \frac{3\pi}{2} < t < 2\pi \), find \( \sin(4t) \).
a) \( \frac{8\sqrt{2}}{3} \)
b) \( -\frac{8\sqrt{2}}{3} \)
c) \( -\frac{56\sqrt{2}}{243} \)
d) \( \frac{56\sqrt{2}}{81} \)
If \( \sin t = \frac{1}{5} \) and \( 0 < t < \frac{\pi}{2} \), find \( \cos(4t) \).
a) 0.3464
b) 0.8
c) 0.6928
d) −0.6928