Tutorial on Rational Functions (1)

This is an analytical tutorial on rational functions to further understand the properties of the rational functions and their graphs. The examples have detailed solutions in this page, the matched exercises have answers here.



Example 1 : Find the equation of the rational function f of the form

f(x) = 2 / (bx + c)

whose graph has a y intercept at (0 , -1) and has a vertical asymptote at x = 2.

Solution to Example 1:

  1. The graph has y intercepts at (0 , -1) , you can write
    f(0) = -1


  2. Which leads to the equation
    -1 = 2 / c

  3. Solve the above equation for c.
    c = -2

  4. The vertical asymptote is given by the zero(s) of the denominator of the equation of the function. A vertical asymptote at x = 2 means that the denominator is equal to zero at x = 2. This leads to
    2b + c = 0

  5. Substitute -2 for c
    2b - 2 = 0

  6. and solve for b.
    b = 1.

  7. The equation of f is given by
    f(x) = 2 / (x -2)

  8. Check answer graphically. Below is shown the graph of f obtained. Check the y intercept and the vertical asymptote.

    Graph of rational fucntion obtained.


Matched Exercise 1: Find the equation of the rational function f of the form

f(x) = -1 / (bx + c)

whose graph has a y intercept at (0 , -1/4) and has a vertical asymptote at x = -1.


Example 2 : Find the equation of the rational function f of the form

f(x) = (x + a) / (bx + c)

whose graph has ax x intercept at (2 , 0), a vertical asymptote at x = -1 and a horizontal asymptote at y = 1/2.

Solution to Example 2:

  1. The x intercept(s) is the zero of the numerator. The numerator is equal to zero at x = 2
    2 + a = 0

  2. Solve the above equation for a.
    a = -2

  3. The horizontal asymptote is given by ratio of the leading coefficients in the numerator and denominator.
    1 / b = 1/2

  4. Solve for b
    b = 2

  5. The vertical asymptote is given by the zero of the denominator. At x = -1 the denominator in f(x) has to be equal to zero.
    -b + c = 0

  6. Substitute 2 for b in the above equation
    -2 + C = 0

  7. Solve the above equation for c
    c = 2

  8. The equation of the rational function is given by
    f(x) = (x - 2)/(2x + 2)

Check answer graphically: The graph of the rational function obtained is shown below. Check the x intercept, the vertical and the horizontal asymptotes.

graph of rational function obtained

Matched Exercise 2: Find the equation of the rational function f of the form

f(x) = (ax - 2 ) / (bx + c)

whose graph has ax x intercept at (1 , 0), a vertical asymptote at x = -1 and a horizontal asymptote at y = 2.



More on rational functions can be found at


Graphs of rational functions

tutorial on graphs of rational functions

self test on graphs of rational functions.


Step by Step Calculator to Find Domain of a Function New ! Free Trigonometry Questions with Answers Interactive HTML5 Math Web Apps for Mobile LearningNew !
Free Online Graph Plotter for All Devices
Home Page -- HTML5 Math Applets for Mobile Learning -- Math Formulas for Mobile Learning -- Algebra Questions -- Math Worksheets -- Free Compass Math tests Practice
Free Practice for SAT, ACT Math tests -- GRE practice -- GMAT practice Precalculus Tutorials -- Precalculus Questions and Problems -- Precalculus Applets -- Equations, Systems and Inequalities -- Online Calculators -- Graphing -- Trigonometry -- Trigonometry Worsheets -- Geometry Tutorials -- Geometry Calculators -- Geometry Worksheets -- Calculus Tutorials -- Calculus Questions -- Calculus Worksheets -- Applied Math -- Antennas -- Math Software -- Elementary Statistics High School Math -- Middle School Math -- Primary Math
Math Videos From Analyzemath
Author - e-mail


Updated: 2 April 2013

Copyright © 2003 - 2014 - All rights reserved