Soluciones de Ecuaciones - 9º Grado
Las soluciones a los problemas en resolver ecuaciones se presentan junto con todos los pasos necesarios y explicaciones detalladas.
Nota: En lo siguiente, LHS significa la evaluación del lado izquierdo de la ecuación y RHS la evaluación del lado derecho de la ecuación.
Dada
\[
2x + 2 = 6
\]
Resta 2 de ambos lados:
\[
2x + 2 - 2 = 6 - 2
\]
Simplifica:
\[
2x = 4
\]
Divide ambos lados por 2:
\[
\dfrac{2x}{2} = \dfrac{4}{2}
\]
\[
x = 2
\]
Comprueba la solución obtenida
\[
\text{LHS: } 2x + 2 = 2(2) + 2 = 6
\]
Ambos lados son iguales, por lo que \(x = 2\) es una solución.
Dada
\[
5y - 2 = 7y - 8
\]
Resta \(5y\) de ambos lados:
\[
5y - 2 - 5y = 7y - 8 - 5y
\]
Simplifica:
\[
-2 = 2y - 8
\]
Suma 8 a ambos lados:
\[
-2 + 8 = 2y - 8 + 8
\]
\[
6 = 2y
\]
Divide ambos lados por 2:
\[
y = 3
\]
Comprueba la solución obtenida
\[
\text{LHS: }5y - 2 = 5(3) - 2 = 13, \quad \text{RHS: } 7y - 8 = 7(3) - 8 = 13
\]
Por lo tanto, \(y = 3\) es una solución.
Dada
\[
-2x + 4 + 5x = 7 + 4x - 3
\]
Combina términos semejantes:
\[
3x + 4 = 4 + 4x
\]
Resta \(3x + 4\) de ambos lados:
\[
0 = x
\]
Comprueba la solución obtenida
\[
\text{LHS: } -2(0) + 4 + 5(0) = 4, \quad \text{RHS: } 7 + 4(0) - 3 = 4
\]
Entonces \(x = 0\) es una solución.
Dada
\[
0.2d + 4 = -0.1d - 2
\]
Suma \(0.1d\) y resta 4 de ambos lados:
\[
0.3d = -6
\]
Divide ambos lados por 0.3:
\[
d = -20
\]
Comprueba la solución obtenida
\[
\text{LHS: } 0.2(-20) + 4 = 0, \quad \text{RHS: } -0.1(-20) - 2 = 0
\]
Por lo tanto, \(d = -20\) es una solución.
Dada
\[
-2(2x - 6) = -(x - 4)
\]
Expande usando la propiedad distributiva:
\[
-4x + 12 = -x + 4
\]
Suma \(x\) a ambos lados:
\[
-3x + 12 = 4
\]
Resta 12:
\[
-3x = -8
\]
Divide por -3:
\[
x = \dfrac{8}{3}
\]
Comprueba la solución obtenida
\[
\text{LHS: } -2(2(8/3)-6) = 4/3, \quad \text{RHS: } -(8/3-4) = 4/3
\]
Por lo tanto, \(x = 8/3\) es una solución.
Dada
\[
-(x+2)+4 = 2(x+3)+x
\]
Expande y simplifica:
\[
-x - 2 + 4 = 2x + 6 + x \quad \Rightarrow \quad -x + 2 = 3x + 6
\]
Suma \(x\) y resta 6:
\[
-4 = 4x
\]
\[
x = -1
\]
Comprueba la solución obtenida
\[
\text{LHS: } -( -1 + 2 ) + 4 = 3, \quad \text{RHS: } 2(-1+3) + (-1) = 3
\]
Por lo tanto, \(x = -1\) es una solución.
Dada
\[
\dfrac{x}{5} = -6
\]
Multiplica ambos lados por 5:
\[
x = -30
\]
Comprueba la solución obtenida
\[
\dfrac{-30}{5} = -6
\]
Por lo tanto, \(x = -30\) es una solución.
Dada
\[
- \dfrac{x}{3} = \dfrac{1}{2}
\]
Multiplica ambos lados por -3:
\[
x = -\dfrac{3}{2}
\]
Comprueba la solución obtenida
\[
\text{LHS: } -(-3/2)/3 = 1/2
\]
Por lo tanto, \(x = -3/2\) es una solución.
Dada
\[
- \dfrac{x}{4} = \dfrac{1}{2} - x
\]
Multiplica ambos lados por 4:
\[
-x = 2 - 4x
\]
Suma \(4x\) a ambos lados:
\[
3x = 2
\]
\[
x = \dfrac{2}{3}
\]
Comprueba la solución obtenida
\[
\text{LHS: } -2/12 = -1/6, \quad \text{RHS: } 1/2 - 2/3 = -1/6
\]
Por lo tanto, \(x = 2/3\) es una solución.
Dada
\[
- \dfrac{x-3}{7} = \dfrac{1}{2}(-2x + 6)
\]
Multiplica ambos lados por 14:
\[
-2(x-3) = 7(-2x+6)
\]
Expande:
\[
-2x + 6 = -14x + 42
\]
Suma 14x a ambos lados:
\[
12x + 6 = 42
\]
Resta 6:
\[
12x = 36
\]
\[
x = 3
\]
Comprueba la solución obtenida
\[
-(3-3)/7 = 0, \quad \frac{1}{2}(-6+6) = 0
\]
Por lo tanto, \(x = 3\) es una solución.
Dada
\[
-\dfrac{1}{2} - x + 5 = \dfrac{1}{5} + 2(x-2)
\]
Multiplica ambos lados por 10:
\[
10(-1/2 - x + 5) = 10(1/5 + 2(x-2))
\]
Simplifica:
\[
-5 -10x + 50 = 2 + 20x - 40
\]
Combina términos semejantes:
\[
-10x + 45 = 20x - 38
\]
Suma 10x:
\[
45 = 30x - 38
\]
Suma 38:
\[
83 = 30x
\]
\[
x = \dfrac{83}{30}
\]
Comprueba la solución obtenida
\[
\text{LHS: } -1/2 - 83/30 + 5 = 26/15, \quad \text{RHS: } 1/5 + 2(83/30-2) = 26/15
\]
Por lo tanto, \(x = 83/30\) es una solución.
Más Referencias y Enlaces