Rhombus Problems

Rhombus problems with detailed solutions are presented. Rhombus Calculator and Solver also included.

Definition of a Rhombus

The rhombus is a parallelogram with four congruent sides (sides with equal lengths). A square is a special case of a rhombus.
rhombus

Properties of a Rhombus

These are some of the most important properties of a rhombus.
Consider the rhombus ABCD shown in the figure above.
1 - All sides are congruent (equal lengths).
length AB = length BC = length CD = length DA = a.
2 - Opposite sides are parallel.
AD is parallel to BC and AB is parallel to DC.
3 - The two diagonals are perpendicular.
AC is perpendicular to BD.
4 - Opposite internal angles are congruent (equal sizes).
internal angle A = internal angle C
and
internal angle B = internal angle D.
5 - Any two consecutive internal angles are supplementary : they add up to 180 degrees.
angle A + angle B = 180 degrees
angle B + angle C = 180 degrees
angle C + angle D = 180 degrees
angle D + angle A = 180 degrees

Area of a Rhombus

These are three formulas for the area of the rhombus.

Formula 1

area = a h , where a is the side length of the rhombus and h is the perpendicular distance between two parallel sides of the rhombus.

Formula 2

area = a 2 sin (A) = a 2 sin (B). Since angles A and B are supplementary angles, sin (A) = sin (B).

Formula 3

area = (1/2) d1 d2, where d1 and d2 are the lengths of the two diagonals.

Problems on Rhombus with Detailed Solutions

Problem 1

The size of the obtuse angle of a rhombus is twice the size of its acute angle. The side length of the rhombus is equal to 10 feet. Find the area of the rhombus.

Solution to Problem 1:

  • A rhombus has 2 congruent opposite acute angles and two congruent opposite obtuse angles. One of the properties of a rhombus is that any two internal consecutive angles are supplementary. Let x be the acute angle. The obtuse angle is twice: 2x. Which gives the following equation.
    x + 2 x = 180 degrees.
  • Solve the above equation for x.
    3x = 180 degrees.
    x = 60 degrees.
  • We use formula 2 for the area of a rhombus knowing the side length and one of the angles.
    area of rhombus = (10 feet) 2 sin (60 degrees)
    = 86.6 feet 2 (rounded to 1 decimal place)

Problem 2

The lengths of the diagonals of a rhombus are 20 and 48 meters. Find the perimeter of the rhombus.
Solution to Problem 2:

  • Below is shown a rhombus with the given diagonals. Consider the right triangle BOC and apply the Pythagorean theorem as follows
    rhombus problem 2

    BC 2 = 10 2 + 24 2
  • and evaluate BC
    BC = 26 meters.
  • We now evaluate the perimeter P as follows:
    P = 4 * 26 = 104 meters.

Problem 3

The perimeter of a rhombus is 120 feet and one of its diagonal has a length of 40 feet. Find the area of the rhombus.

Solution to Problem 3:

  • All 4 sides of a rhombus are equal. Hence, a perimeter of 120 ft when divided by 4 gives the side of the rhombus 30 feet. Hence
    BC = 30 ft
  • The length of the side OC of the right triangle is equal to half the diagonal: 20 feet.
    OC = 20 ft
    Let us now consider the right triangle BOC and apply the Pythagorean theorem to find the length of side BO.
    rhombus problem 3

    BC 2 = BO 2 +OC 2
    Substitute
    30 2 = BO 2 + 20 2
    BO = 10 √(5) feet
  • We now calculate the area of the right triangle BOC and multiply it by 4 to obtain the area of the rhombus.
    area = 4 ( 1/2) BO OC = 4 (1/2)10 √ (5) 20
    = 400 √(5) feet 2

More References and Links to Geometry

Geometry Tutorials, Problems and Interactive Applets.
Rhombus - Geometry Calculator to calculate the characteristics of a rhombus