Similar Triangles: Examples and Problems with Solutions

Learn about similar triangles through definitions, theorems, worked examples, and practice problems with detailed step-by-step solutions.

Review of Similar Triangles

Definition

Two triangles \( \triangle ABC \) and \( \triangle A'B'C' \) are similar if their corresponding angles are congruent and corresponding sides are proportional:

\[ \frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'} \]

Similar triangles definition

Angle-Angle (AA) Similarity Theorem

If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.

Example 1:
Let \( \triangle ABC \) be a triangle and \( \overline{A'C'} \) parallel to \( \overline{AC} \). What can you say about \( \triangle ABC \) and \( \triangle A'BC' \)?

AA similarity example

Side-Side-Side (SSS) Similarity Theorem

If corresponding sides of two triangles are proportional, the triangles are similar.

Example 2:
Given vertices \( A(-2,0), B(0,4), C(2,0) \) and \( P(-1,1), Q(0,3), R(1,1) \), show that \( \triangle ABC \sim \triangle PQR \).

SSS similarity example

Side-Angle-Side (SAS) Similarity Theorem

If an angle of one triangle is congruent to an angle of another triangle, and the including sides are proportional, the triangles are similar.

Example 3:
Show that \( \triangle ABC \sim \triangle A'BC' \).

SAS similarity example

Similar Triangles Practice Problems

Problem 1:
In the diagram, \( \overline{A'C'} \parallel \overline{AC} \). Find length \( y = BC' \) and \( x = A'A \).
Problem 1 diagram

Problem 2:
A light source at \( L \) (height 2 m) shines through pole top \( P' \) to mountain top \( M' \). Pole height = 20 m. Distance mountain-pole = 1000 m, pole-laser = 10 m. Find mountain height \( h \).
Mountain height problem

Problem 3:
Given \( \triangle ABC \sim \triangle A'B'C' \) with ratio \( k \), find ratio \( \frac{BH}{B'H'} \) of their altitudes.
Altitude ratio problem

Problem 4:
Chords \( \overline{BA'} \) and \( \overline{AB'} \) intersect at \( C \). Find a relationship between segments \( AC, BC, B'C, A'C \).
Intersecting chords problem

Problem 5:
In right \( \triangle ABC \), \( \overline{AM} \perp \overline{BC} \). How many similar triangles are there?
Right triangle similarity problem

Solutions

Example 1 Solution

Since \( \overline{A'C'} \parallel \overline{AC} \):
\( \angle BA'C' \cong \angle BAC \) (corresponding angles)
\( \angle BC'A' \cong \angle BCA \) (corresponding angles)
By AA similarity, \( \triangle ABC \sim \triangle A'BC' \).

Example 2 Solution

Calculate side lengths:
\( AB = \sqrt{(0+2)^2 + (4-0)^2} = \sqrt{4 + 16} = 2\sqrt{5} \)
\( BC = \sqrt{(2-0)^2 + (0-4)^2} = \sqrt{4 + 16} = 2\sqrt{5} \)
\( CA = \sqrt{(-2-2)^2 + (0-0)^2} = 4 \)
\( PQ = \sqrt{(0+1)^2 + (3-1)^2} = \sqrt{1 + 4} = \sqrt{5} \)
\( QR = \sqrt{(1-0)^2 + (1-3)^2} = \sqrt{1 + 4} = \sqrt{5} \)
\( RP = \sqrt{(-1-1)^2 + (1-1)^2} = 2 \)
Ratios: \( \frac{AB}{PQ} = \frac{2\sqrt{5}}{\sqrt{5}} = 2 \), \( \frac{BC}{QR} = 2 \), \( \frac{CA}{RP} = 2 \)
Since \( \frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} \), by SSS similarity \( \triangle ABC \sim \triangle PQR \).

Example 3 Solution

\( \angle ABC \cong \angle A'BC' \) (given)
Check including sides: \( \frac{BA}{BA'} = \frac{10}{4} = 2.5 \), \( \frac{BC}{BC'} = \frac{5}{2} = 2.5 \)
Since the ratios are equal and the included angles congruent, by SAS similarity \( \triangle ABC \sim \triangle A'BC' \).

Problem 1 Solution

Separate triangles: \( \triangle ABC \) and \( \triangle A'BC' \)
Since \( \overline{A'C'} \parallel \overline{AC} \), triangles are similar (AA).
Set up proportions: \( \frac{30 + x}{30} = \frac{22}{14} = \frac{y + 15}{y} \)
Solve for \( x \): \( \frac{30 + x}{30} = \frac{22}{14} \Rightarrow 14(30 + x) = 660 \)
\( 420 + 14x = 660 \Rightarrow 14x = 240 \Rightarrow x \approx 17.1 \)
Solve for \( y \): \( \frac{22}{14} = \frac{y + 15}{y} \Rightarrow 22y = 14y + 210 \)
\( 8y = 210 \Rightarrow y = 26.25 \)

Problem 2 Solution

Triangles \( \triangle LPP' \) and \( \triangle LMM' \) are similar (AA).
Proportions: \( \frac{LM}{LP} = \frac{MM'}{PP'} \Rightarrow \frac{1000 + 10}{10} = \frac{h - 2}{20 - 2} \)
\( \frac{1010}{10} = \frac{h - 2}{18} \Rightarrow 101 = \frac{h - 2}{18} \)
\( h - 2 = 1818 \Rightarrow h = 1820 \text{ meters} \).

Problem 3 Solution

Since triangles are similar, \( \angle B \cong \angle B' \) and \( \angle BAH \cong \angle B'A'H' \).
Right triangles \( \triangle BHA \) and \( \triangle B'H'A' \) are similar (AA).
Therefore: \( \frac{BH}{B'H'} = \frac{AB}{A'B'} = k \).

Problem 4 Solution

Join \( \overline{BA} \) and \( \overline{B'A'} \).
\( \angle ABA' \cong \angle AB'A' \) (subtend same arc)
\( \angle BAB' \cong \angle BA'B' \) (subtend same arc)
So \( \triangle ABC \sim \triangle A'B'C \) (AA).
Proportions: \( \frac{BC}{B'C} = \frac{CA}{CA'} \)
Cross multiply: \( BC \cdot CA' = B'C \cdot CA \).

Problem 5 Solution

Three similar triangles:
1. \( \triangle ABC \sim \triangle MBA \) (AA: right angle and \( \angle B \))
2. \( \triangle ABC \sim \triangle MAC \) (AA: right angle and \( \angle C \))
3. Consequently, \( \triangle MBA \sim \triangle MAC \).

Further Resources

Intercept Theorem and Problems
Geometry Tutorials and Problems
Congruent Triangles Examples