Find the integral
∫cos2xdx
Use the trigonometric identity cos2x=12(1+cos(2x)) to write
∫cos2xdx=12∫(1+cos(2x))dx
Use the sum rule of integrals ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx to rewrite the integral as
∫cos2xdx=12∫dx+∫cos(2x))dx
Use the common integrals ∫dx=x and ∫cos(2x)dx=12sin(2x) to write the final result as
∫cos2xdx=12x+14sin(2x)+c