Table of Integral Formulas

A table of indefinite integrals of functions is presented below.
In what follows, c c is a constant of integration and can take any constant value.

1 - Integrals of Elementary Functions.

1.1   dx=x+c \displaystyle \int \; dx = x + c
1.2 k  dx=kx+c \displaystyle \int k \; dx = k x + c , where k k is a constant.
1.3 xn  dx=xn+1n+1+c \displaystyle \int x^n \; dx = \dfrac{x^{n+1}}{n+1} + c
1.4 1x  dx=lnx+c \displaystyle \int \dfrac{1}{x} \; dx = \ln |x| + c

2 - Integrals of Elementary Trigonometric Functions : sinx \sin x , cosx \cos x , tanx \tan x , cotx \cot x , secx \sec x and cscx \csc x .

2.1 sinx  dx=cosx+c \displaystyle \int \sin x \; dx = -\cos x + c
2.2 cosx  dx=sinx+c \displaystyle \int \cos x \; dx = \sin x + c
2.3 tanx  dx=lnsecx+c \displaystyle \int \tan x \; dx = \ln |\sec x| + c
2.4 cotx  dx=lnsinx+c \displaystyle \int \cot x \; dx = \ln |\sin x| + c
2.5 secx  dx=lnsecx+tanx+c \displaystyle \int \sec x \; dx = \ln |\sec x + \tan x| + c
2.6 cscx  dx=lncscxcotx+c \displaystyle \int \csc x \; dx = \ln |\csc x - \cot x| + c

3 - Integrals Involving More Than One Trigonometric Function.

3.1 secxtanx  dx=secx+c \displaystyle \int \sec x \tan x \; dx = \sec x + c
3.2 cscxcotx  dx=cscx+c \displaystyle \int \csc x \cot x \; dx = - \csc x + c
3.3 sinmxsinnx  dx=sin[(m+n)x]2(m+n)+sin[(mn)x]2(mn)+c \displaystyle \int \sin mx \sin nx \; dx = -\dfrac{\sin[(m+n)x]}{2(m+n)} + \dfrac{\sin[(m-n)x]}{2(m-n)} + c , with mn m \neq n
3.4 cosmxcosnx  dx=sin[(m+n)x]2(m+n)+sin[(mn)x]2(mn)+c \displaystyle \int \cos mx \cos nx \; dx = \dfrac{\sin[(m+n)x]}{2(m+n)} + \dfrac{\sin[(m-n)x]}{2(m-n)} + c , with mn m \neq n
3.5 sinmxcosnx  dx=cos[(m+n)x]2(m+n)cos[(mn)x]2(mn)+c \displaystyle \int \sin mx \cos nx \; dx = -\dfrac{\cos[(m+n)x]}{2(m+n)} - \dfrac{\cos[(m-n)x]}{2(m-n)} + c , with mn m \neq n

4 - Integrals Involving Exponential and Logarithmic Functions.

4.1 ex  dx=ex+c \displaystyle \int e^x \; dx = e^x + c
4.2 ax  dx=axlna+c \displaystyle \int a^x \; dx = \dfrac{a^x}{\ln a} + c
4.3 lnx  dx=xlnxx+c \displaystyle \int \ln x \; dx = x \ln x - x + c

5 - Integrals of Inverse Trigonometric functions: arcsinx \arcsin x , arccosx \arccos x , arctanx \arctan x , arccot  x \text{arccot} \; x , arcsec  x \text{arcsec}\; x and arccsc  x \text{arccsc} \; x .

5.1 arcsinx  dx=xarcsinx+1x2+c \displaystyle \int \arcsin x \; dx = x \arcsin x + \sqrt{1 - x^2} + c
5.2 arccosx  dx=xarccosx1x2+c \displaystyle \int \arccos x \; dx = x \arccos x - \sqrt{1 - x^2} + c
5.3 arctanx  dx=xarctanxln1+x2+c \displaystyle \int \arctan x \; dx = x \arctan x - \ln \left| \sqrt{1 + x^2} \right| + c
5.4 arccot  x  dx=x  arccot  x+ln1+x2+c \displaystyle \int \text{arccot} \; x \; dx = x \; \text{arccot} \; x + \ln \sqrt{1 + x^2} + c
5.5 arcsec  x  dx=x  arcsec  xlnx+x21+c \displaystyle \int \text{arcsec} \; x \; dx = x \; \text{arcsec} \; x - \ln \left| x + \sqrt{x^2 - 1} \right| + c
5.6  arccsc  x  dx=x   arccsc  x+lnx+x21+c \displaystyle \int \text{ arccsc} \; x \; dx = x \; \text{ arccsc} \; x + \ln \left| x + \sqrt{x^2 - 1} \right| + c

6 - Integrals Involving Exponential and Sine and Cosine Functions.

6.1 eaxsinbx  dx=eaxa2+b2(asinbxbcosbx)+c \displaystyle \int e^{ax} \sin bx \; dx = \dfrac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c
6.2 eaxcosbx  dx=eaxa2+b2(bsinbx+acosbx)+c \displaystyle \int e^{ax} \cos bx \; dx = \dfrac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx) + c

7 - Integrals Involving Hyperbolic Functions: sinhx \sinh x , coshx \cosh x , tanhx \tanh x , cothx \coth x , sech  x \text{sech} \; x , csch  x \text{csch} \; x .

7.1 sinhx  dx=coshx+c \displaystyle \int \sinh x \; dx = \cosh x + c
7.2 coshx  dx=sinhx+c \displaystyle \int \cosh x \; dx = \sinh x + c
7.3 sech  xtanhx  dx=  sech  x+c \displaystyle \int \text{sech} \; x \tanh x \; dx = - \; \text{sech} \; x + c
7.4 csch  xcothx  dx=  csch  x+c \displaystyle \int \text{csch} \; x \coth x \; dx = - \; \text{csch} \; x + c
7.5 sech2x  dx=tanhx+c \displaystyle \int \text{sech}^2 x \; dx = \tanh x + c
7.6 csch2x  dx=  cothx+c \displaystyle \int \text{csch}^2 x \; dx = - \;\coth x + c
Más referencias sobre integrales y sus aplicaciones en cálculo.