# Make a Sign Table of Polynomials

Questions with Solutions

How to make a sign table for polynomials? Grade 12 maths questions are presented along with detailed solutions and graphical interpretations.

Free Practice for SAT, ACT

and Compass Maths tests

## Question 1

Polynomial p is given by $$p(x) = (x - 1)^2(x - √3) (x + √3) $$

Make a sign table of p and sketch a possible graph for p.

## solution

We first find the zeros of the polynomial function p.

p(x) = (x - 1)^{2} (x - √3) (x + √3) = 0

For p(x) = 0, we need to have

(x - 1)^{2} = 0 , or (x - √3) = 0 , or (x + √3) = 0

Solve each of the above equations to obtain the zeros of p(x).

x = 1 (multiplicity 2) , x = √3 and x = - √3

c) With the help of the factored form of p(x) and its zeros found above, we now make a table of signs using:

(x - 1)^{2} is positive for all x except at x = 1

x - √3 > 0 for x > √3

x + √3 > 0 for x > - √3

We put each factor in the table and use the rules of multiplication of signs to complete the sign for p as shown below.

.

We use the zeros of p(x) which graphically are shown as x intercepts, the table of signs and the y intercept (0 , -3) to complete the graph as shown below.

.

## Question 2

f(x) is a polynomial of degree six with a negative leading coefficient. f has a zero of multiplicity 1 at x = -1, a zero of multiplicity 3 at x = 1, and a zero of multiplicity 2 at x = 3. Make a sign table for the polynomial f.

## solution

We first write the factors of polynomial f with their multiplicity.

zero of multiplicity 1 at x = -1 : factor: x + 1

zero of multiplicity 3 at x = 1 : factor: (x - 1)^{3}

zero of multiplicity 2 at x = 3 : factor: (x - 3)^{2}

Let k (negative) be the leading coefficient of f. Using all the above factors, we write f(x) as

f(x) = k (x + 1)(x - 1)^{3}(x - 3)^{2}

We first study the sign of the different factors of f.

x + 1 > 0 for x > - 1

(x - 1)^{3} > 0 for x > 1

(x - 3)^{2} > 0 for all x except x = 3

Below is shown the table of signs of each factor and of the polynomial f(x) in the bottom row.

.

### More References and links

Introduction to Polynomials

Find Zeros of Polynomial Functions

Polynomial Questions and Problems with Solutions

High School Math (Grades 10, 11 and 12) - Free Questions and Problems With Answers

Middle School Math (Grades 6, 7, 8, 9) - Free Questions and Problems With Answers

Home Page