The definition of a relation in mathematics, along with its domain and range, is presented with examples, questions and their solutions.
A relation is a correspondence between two sets called the domain and the range [1].
The relation \( R_1 \) between a group of four students \( \{ \; \text{Sasha}\; , \; \text{Smith} \; , \; \text{Jane} \; , \; \text{John} \; \} \) and their exam scores \( \{ \; 85 \; , \; 92 \; , \; 71 \; \} \) is shown in the diagram below.
The above relation \( R_1 \) may be represented as a set of ordered pairs:
\( R_1 = \{ \; (\text{Sasha} \; , \; 85) \; , \; (\text{Smith} \; , \; 85) \; , \; (\text{Jane} \; , \; 92) \; , \; (\text{John} \; , \; 71) \; \} \)
The first element in each ordered pair is an element of the domain and the second element is the corresponding element of the range.
The domain \( D \) of the relation \( R_1 \): \( D = \{ \; \text{Sasha}\; , \; \text{Smith} \; , \; \text{Jane} \; , \; \text{John} \; \} \)
The range \( R \) of the relation \( R_1 \): \( R = \{ \; 85 \; , \; 92 \; , \; 71 \; \} \)
The relation \( R_2 \) between match times \( \{ 10 \; \text{am} \; , \; 1 \; \text{pm} \; , \; 4 \; \text{pm} \} \) and team pairs \( \{ \text{A vs B} \; , \; \text{C vs D} \; , \; \text{E vs F} \; , \; \text{G vs H} \} \) is shown below.
The relation \( R_2 \) as ordered pairs:
\( R_2 = \{ \; (10 \; \text{am} \; , \; \text{A vs B}) \; , \; (1 \; \text{pm} \; , \; \text{C vs D}) \; , \; (4 \; \text{pm} \; , \; \text{E vs F}) \; , \; (4 \; \text{pm} \; , \; \text{G vs H}) \; \} \)
The domain \( D \): \( D = \{ \; 10 \; \text{am} \; , \; 1 \; \text{pm} \; , \; 4 \; \text{pm} \; \} \)
The range \( R \): \( R = \{ \; \text{A vs B} \; , \; \text{C vs D} \; , \; \text{E vs F} \; , \; \text{G vs H} \; \} \)
Different methods to represent mathematical relations:
Relations use sets for domain and range with arrows connecting corresponding elements.
A relation represented as a set of ordered pairs:
\( R_3 = \{ \; (2,3) \; , \; (4,1) \; , \; (6,4) \; , \; (7,2) \; , \; (7,6) \; \} \)
A table with domain values in one row and corresponding range values in another:
| \( x \) | \( 2 \) | \( 4 \) | \( 6 \) | \( 7 \) | \( 7 \) |
| \( y \) | \( 3 \) | \( 1 \) | \( 4 \) | \( 2 \) | \( 6 \) |
Rectangular coordinate system with points representing ordered pairs \((x,y)\).
The equation \( y = 3x + 1 \) defines a relation between \( x \) and \( y \). For given \( x \) values:
| \( x \) | \( -3 \) | \( 0 \) | \( 5 \) | \( 8 \) |
| \( y \) | \( -8 \) | \( 1 \) | \( 16 \) | \( 25 \) |
Given relation \( R_4 = \{ \; (-1,3) \; , \; (2,4) \; , \; (5,7) \; , \; (2,6) \; \} \):
a) Find domain and range
b) Represent as graph
c) Represent as table
d) Represent as Venn diagram
a) Domain \( D = \{ -1, 2, 5 \} \), Range \( R = \{ 3, 4, 6, 7 \} \)
b) Graph representation:
c) Table representation:
| \( x \) | \( -1 \) | \( 2 \) | \( 2 \) | \( 5 \) |
| \( y \) | \( 3 \) | \( 4 \) | \( 6 \) | \( 7 \) |
d) Venn diagram representation:
Relation \( R_5 \) is given by its graph:
a) Represent as ordered pairs, table, and Venn diagram
b) Find domain and range
Relation \( R_6 \) is given by table:
| \( x \) | \( -2 \) | \( -2 \) | \( -2 \) | \( 0 \) | \( 1 \) | \( 3 \) |
| \( y \) | \( 3 \) | \( 4 \) | \( 5 \) | \( 4 \) | \( 0 \) | \( 0 \) |
a) Find domain and range
b) Represent as ordered pairs and Venn diagram
a) Give two different relations with same domain
b) Give two different relations with same range
c) Give two different relations with same domain and range
Relation defined by \( y + 4x = 2 \) with \( x \in \{ -1, 0, 1, 2 \} \):
a) Use table to find corresponding \( y \) values
b) Represent graphically
a) \( R_5 = \{ (-2,2), (1,1), (2,1), (2,5), (4,2), (4,3), (4,4) \} \)
Table representation:
| \( x \) | -2 | 1 | 2 | 2 | 4 | 4 | 4 |
| \( y \) | 2 | 1 | 1 | 5 | 2 | 3 | 4 |
Venn diagram:
b) Domain \( D = \{ -2, 1, 2, 4 \} \), Range \( R = \{ 1, 2, 3, 4, 5 \} \)
a) Domain \( D = \{ -2, 0, 1, 3 \} \), Range \( R = \{ 0, 3, 4, 5 \} \)
b) \( R_6 = \{ (-2,3), (-2,4), (-2,5), (0,4), (1,0), (3,0) \} \)
a) \( \{ (-3,3), (-2,4), (0,5), (4,5) \} \) and \( \{ (-3,3), (-2,8), (0,5), (4,0) \} \)
b) \( \{ (0,3), (-2,5), (6,5), (7,5) \} \) and \( \{ (-3,3), (-2,5), (0,5), (9,5) \} \)
c) \( \{ (-1,0), (0,-5), (4,5), (7,8) \} \) and \( \{ (-1,0), (-1,-5), (0,-5), (4,5), (7,8) \} \)
a) Table of values:
| \( x \) | -1 | 0 | 1 | 2 |
| \( y \) | 6 | 2 | -2 | -6 |
b) Graph:
[1] Algebra and Trigonometry - R.E. Larson, R.P. Hostetler, B.H. Edwards, D.E. Heyd - 1997 - ISBN: 0-669-41723-8
Additional Resources: