Special Right Triangles

\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)

The steps to obtain the six trigonometric ratios of the special angles \( 30^{\circ}, 45^{\circ} \) and \( 60^{\circ} \) using special right triangles are presented.
The values of the six trigonometric of the special angles are given in a table at the bottom of the page.

Isosceles Right Triangle or 45-45-90 Triangle

It is a right triangle with equal sides and angles equal to \( 45^{\circ} \) as shown in figure 1 below.

Iscoceles Right Triangle or 45-45-90 right triangle Figure 1


This triangle helps in obtaining trigonometric ratios of a \( 45^{\circ} \) angle. We first use the
Pythagorean theorem to find the hypotenus \( h \).

\( \qquad h^2 = a^2 + a^2 \)
Simplify and solve foe \( h \)
\( \qquad h^2 = 2 a^2 \)
\( \qquad h = a \sqrt 2 \)
Let us now use the above triangle, apply the six trigonometric ratios to find all six trigonometric ratios of an angle of \( 45^{\circ} \).

\( \qquad \sin 45^{\circ} = \dfrac{\text{Opposite Side}}{\text{Hypotenuse}} = \dfrac{a}{h} = \dfrac{a}{a \sqrt 2} = \dfrac{1}{ \sqrt 2} = \dfrac{\sqrt 2}{2} \)

\( \qquad \cos 45^{\circ} = \dfrac{\text{Adjacent Side}}{\text{Hypotenuse}} = \dfrac{a}{h} = \dfrac{a}{a \sqrt 2} = \dfrac{1}{ \sqrt 2} = \dfrac{\sqrt 2}{2} \)

\( \qquad \tan 45^{\circ} = \dfrac{\text{Opposite Side}}{\text{Adjacent Side}} = \dfrac{a}{a} = 1 \)

\( \qquad \csc 45^{\circ} = \dfrac{1}{\sin 45^{\circ}} = \dfrac{2}{\sqrt 2} =\sqrt 2 \)

\( \qquad \sec 45^{\circ} = \dfrac{1}{\cos 45^{\circ}} = \dfrac{2}{\sqrt 2} = \sqrt 2 \)

\( \qquad \cot 45^{\circ} = \dfrac{1}{\tan 45^{\circ}} = \dfrac{1}{1} = 1 \)


30-60-90 Right Triangle

We start with an equilateral triangle with side \( a \) as shown in figure 2 below. Then draw a perpendicular from one of the vertices of the triangle to the opposite base. This perpendicular bisects the angle into two equal angles of \( 30^{\circ} \) and the opposite side into two equal segments of length \( \dfrac{a}{2} \) as shown in figure 3 below.

equilateral triangle of side a Figure 2


30-60-90 right triangle Figure 3


This special right triangle 30-60-90 in figure 3 helps us find the six trigonometric ratios of angles \( 30^{\circ} \) and \( 60^{\circ} \).

We first use the Pythagorean theorem to find the side \( h\).

\( \qquad a^2 = h^2 + \left(\dfrac{a}{2}\right)^2 \)

Solve for \( h^2 \).
\( \qquad h^2 = a^2 - \dfrac{a^2}{4} = 3 \dfrac{a^2}{4} \)
Take the square root of both sides to solve for \( h \).
\( \qquad h = \dfrac{a \sqrt 3}{2} \)

We now use the above triangle to find all six trigonometric ratios of \( 30^{\circ} \).

\( \qquad \sin 30^{\circ} = \dfrac{\text{Opposite Side}}{\text{Hypotenuse}} = \dfrac{\dfrac{a}{2}}{a} = \dfrac{1}{2} \)

\( \qquad \cos 30^{\circ} = \dfrac{\text{Adjacent Side}}{\text{Hypotenuse}} = \dfrac{h}{a} = \dfrac{\dfrac{a \sqrt 3}{2}}{a} = \dfrac{\sqrt 3}{2} \)

\( \qquad \tan 30^{\circ} = \dfrac{\text{Opposite Side}}{\text{Adjacent Side}} = \dfrac{\dfrac{a}{2}}{h} = \dfrac{\dfrac{a}{2}}{\dfrac{a \sqrt 3}{2}} = \dfrac{1}{\sqrt 3} \)

\( \qquad \csc 30^{\circ} = \dfrac{1}{\sin 30^{\circ}} = \dfrac{1}{1/2} = 2 \)

\( \qquad \sec 30^{\circ} = \dfrac{1}{\cos 30^{\circ}} = \dfrac{2}{\sqrt 3} \)

\( \qquad \cot 30^{\circ} = \dfrac{ 1 }{\tan 30^{\circ} } = \sqrt 3 \)


We now use the same triangle in figure 3 to find all six trigonometric ratios of \( 60^{\circ} \).
\( \qquad \sin 60^{\circ} = \dfrac{\text{Opposite Side}}{\text{Hypotenuse}} = \dfrac{h}{a} = \dfrac{\dfrac{a \sqrt 3}{2}}{a} = \dfrac{\sqrt 3}{2} \)

\( \qquad \cos 60^{\circ} = \dfrac{\text{Adjacent Side}}{\text{Hypotenuse}} = \dfrac{a/2}{a} = \dfrac{1}{2} \)

\( \qquad \tan 60^{\circ} = \dfrac{\text{Opposite Side}}{\text{Adjacent Side}} = \dfrac{h}{a/2} = \dfrac{\dfrac{a \sqrt 3}{2}}{a/2} = \sqrt 3 \)

\( \qquad \csc 60^{\circ} = \dfrac{1}{\sin 60^{\circ}} = \dfrac{1}{\dfrac{\sqrt 3}{2}} = \dfrac{2}{\sqrt 3} \)

\( \qquad \sec 60^{\circ} = \dfrac{1}{\cos 60^{\circ}} = \dfrac{1}{1/2} = 2\)

\( \qquad \cot 60^{\circ} = \dfrac{ 1 }{\tan 60^{\circ} } = \dfrac{1}{\sqrt 3} \)


Table of the Six Trigonomeotric Functions for Special Angles

Here we group all values of the six trigonometric function in a table.
NOTE that the letter \( U \) used in the table mean undefined.

\( \color{red}{\theta \;\;\; \text{( in Degrees )} }\) \( \color{red}{ 0^{\circ} } \) \( \color{red}{ 30^{\circ} } \) \( \color{red}{ 45^{\circ} } \) \( \color{red}{ 60^{\circ} } \) \( \color{red}{ 90^{\circ} } \)
\( \color{red}{\theta \;\;\; \text{( in Radians )} }\) \( \color{red}{ 0 } \) \( \color{red}{ \dfrac{\pi}{6} } \) \( \color{red}{ \dfrac{\pi}{4} } \) \( \color{red}{ \dfrac{\pi}{3} } \) \( \color{red}{ \dfrac{\pi}{2} } \)
\( \color{red}{\sin \theta}\) \( 0 \) \( \dfrac{1}{2} \) \( \dfrac{\sqrt 2}{2} \) \( \dfrac{\sqrt 3}{2} \) \( 1 \)
\( \color{red}{\cos \theta} \) \( 1 \) \( \dfrac{\sqrt 3}{2} \) \( \dfrac{\sqrt 2}{2} \) \( \dfrac{1}{2} \) \( 0 \)
\( \color{red}{ \tan \theta } \) \( 0 \) \( \dfrac{1}{\sqrt 3} \) \( 1 \) \( \sqrt 3 \) \( \text{U}\)
\( \color{red}{\csc \theta}\) \( \text{U}\) \( 2 \) \( \sqrt 2 \) \( \dfrac{2}{\sqrt 3} \) \( 1 \)
\( \color{red}{\sec \theta} \) \( 1 \) \( \dfrac{2}{\sqrt 3} \) \( \sqrt 2 \) \( 2 \) \( \text{U}\)
\( \color{red}{ \cot \theta } \) \( \text{U}\) \( \sqrt 3 \) \( 1 \) \( \dfrac{1}{\sqrt 3} \) \( 0 \)



More References and Links

  1. Solve Problems Using Trigonometric Ratios
  2. Trigonometric Problems

{ezoic-ad-1}
{ez_footer_ads}