This page presents a collection of right-triangle trigonometry problems solved using the six trigonometric ratios. Each problem includes clear reasoning and step-by-step solutions.
In a right triangle, the six trigonometric ratios are defined as follows:
Given the right triangle below, find \(\sin A\), \(\cos A\), \(\tan A\), \(\sec A\), \(\csc A\), and \(\cot A\).
First, find the hypotenuse using Pythagoras' theorem:
\[ c^2 = 8^2 + 6^2 = 100 \quad \Rightarrow \quad c^2 = 100 \quad \Rightarrow c = \sqrt{100} = 10 \]Now apply the trigonometric ratios:
\[ \sin A = \frac{8}{10} = \frac{4}{5} \] \[ \cos A = \frac{6}{10} = \frac{3}{5} \] \[ \tan A = \frac{8}{6} = \frac{4}{3} \] \[ \sec A = \frac{10}{6} = \frac{5}{3} \] \[ \csc A = \frac{10}{8} = \frac{5}{4} \] \[ \cot A = \frac{6}{8} = \frac{3}{4} \]Find the length of the hypotenuse \(c\).
Using the sine ratio:
\[ \sin 31^\circ = \frac{5.12}{c} \]Solving for \(c\):
\[ c = \frac{5.12}{\sin 31^\circ} \approx 9.94 \]If \(x\) is an acute angle and \(\sin x = \frac{3}{7}\), find the exact values of \(\cos x\) and \(\cot x\).
Let opposite \(= 3\) and hypotenuse \(= 7\). Find the adjacent side:
Pythora's theorem gives: \[ 7^2 = a^2 + 3^2 \Rightarrow a = \sqrt{40} = 2\sqrt{10} \] \[ \cos x = \frac{2\sqrt{10}}{7} \quad\quad \cot x = \frac{2\sqrt{10}}{3} \]Find the exact values of \(x\) and \(y\).
If \(\tan x = 5\), find the exact values of \(\sin x\) and \(\cos x\).
Start with: \(\tan x = \frac{\text{Opposite}}{\text{Adjacent}} = \dfrac{5}{1}\)
Let opposite \(= 5\) and adjacent \(= 1\).
\[ \text{hypotenuse} = \sqrt{1^2 + 5^2} = \sqrt{26} \] \[ \sin x = \frac{5}{\sqrt{26}} \quad\quad \cos x = \frac{1}{\sqrt{26}} \]An acute angle \( \theta \) of a right triangle satisfies \[ \sin \theta + \cos \theta = \frac{7}{5}. \] Find the exact values of \( \sin \theta \) and \( \cos \theta \).
Square both sides of the given equation \[ (\sin \theta + \cos \theta )^2 = \left(\frac{7}{5} \right)^2. \]
Use the identity \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta. \]
and the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we obtain
\[ \left(\frac{7}{5}\right)^2 = 1 + 2\sin \theta \cos \theta \] \[ \frac{49}{25} = 1 + 2\sin \theta \cos \theta \] \[ 2\sin \theta \cos \theta = \frac{24}{25} \] \[ \sin \theta \cos \theta = \frac{12}{25} \]Now we have the system:
\[ \sin \theta + \cos \theta = \frac{7}{5} \] \[ \sin \theta \cos \theta = \frac{12}{25} \]These are the sum and product of two positive numbers. Let \( x = \sin \theta \) and \( y = \cos \theta \).
\[ x+ y = \frac{7}{5} \quad (1) \] \[ x \cdot y = \frac{12}{25} \quad (2) \] Solve equation (1) for \( y \) \[ y = \frac{7}{5} - x \] Substitute in equation (2) \[ x \cdot (\frac{7}{5} - x ) = \frac{12}{25} \quad (2) \] Rearrange to write \[ x^2 - \frac{7}{5}x + \frac{12}{25} = 0 \]Multiply through by 25:
\[ 25x^2 - 35x + 12 = 0 \]Factor:
\[ (5x - 3)(5x - 4) = 0 \] \[ x = \frac{3}{5} \quad \text{or} \quad x = \frac{4}{5} \]Since \( \theta \) is acute, both sine and cosine are positive and using the equation \( x \cdot y = \frac{12}{25} \), we obtain:
\[ \boxed{ x = \sin \theta = \frac{3}{5}, \quad y = \cos \theta = \frac{4}{5}} \] or (depending on the orientation of the triangle) \[ \boxed{ x = \sin \theta = \frac{4}{5}, \quad y = \cos \theta = \frac{3}{5}} \]