Geometry Problems with Solutions and Answers for Grade 11

Grade 11 geometry problems with detailed solutions are presented.



  1. The two circles below are concentric (have same center). The radius of the large circle is 10 and that of the small circle is 6. What is the length of the chord AB?

    geometry grade 11 problem 1.


  2. Point A is inside the square BCDE whose side length is 20. The length of AB is 9 and the length of AE is 13. Find x the length of AC.

    geometry grade 11 problem 2.


  3. Find all points of intersections of the circle x2 + 2x + y2 + 4y = -1 and the line x - y = 1

  4. Find the area of the triangle enclosed by the x - axis and the lines y = x and y = -2x + 3.

  5. Find the length of the third side of a triangle if the area of the triangle is 18 and two of its sides have lengths of 5 and 10.

  6. In the figure below points A, B, C and D are on a circle. Point O is the intersection of chords AC and BD. The area of triangle BOC is 15; the lenght of AO is 10 and the length of OB is 5. What is the area of triangle AOD?

    geometry grade 11 problem 6.


Solutions to the Above Problems

  1. If we draw a radius in the small circle to the point of tangency, it will be at right angle with the chord.(see figure below). If x is half the length of AB, r is the radius of the small circle and R the radius of the large circle then by Pythagora's theorem we have:

    r2 + x2 = R2

    62 + x2 = 102

    Solve for x: x = 8

    Length of AB = 2x = 16

    geometry grade 11 solution to problem 1.


  2. Use cosine law in triangle ABE: 132 = 202 + 92 - 2(20)(9)cos(T)

    Use cosine law in triangle ACB: x2 = 202 + 92 - 2(20)(9)cos(90o - T)

    geometry grade 11 solution to problem 2.


    Note that cos(90o - T) = sin(T) and rewrite the second equation as

    Use cosine law in triangle ACB: x2 = 202 + 92 - 2(20)(9)sin(T)

    Solve the first equation for cos(T).

    cos(T) = 13/15

    Use trigonometric identity to find sin(T) = 2 sqrt(14) / 15

    Substitute sin(T) by 2 sqrt(14) / 15 in the third equation and solve for x

    x = sqrt( 481 - 48 sqrt( 14 ) ) = 17.4 (approximated to 3 significant digits)
  3. Solve x - y = 1 for x (x = 1 + y) and substitute in the equation of the circle to obtain:

    (1 + y)2 + 2(1 + y) + y2 + 4y = -1

    Write the above quadratic equation in standard form and solve it to obtain

    y = - 2 + sqrt(2) and y = - 2 - sqrt(2)

    Use x = 1 + y to find x

    Points of intersection: ( -1 + sqrt(2), - 2 + sqrt(2) ) and ( -1 - sqrt(2) , -2 - sqrt(2) )
  4. We first graph the lines y = x and y = -2x + 3 in order to locate the points of intersection of the lines and the x axis and identify the triangle in question.

    geometry grade 11 solution to problem 4.



    The height is the y coordinate of the point of intersection of the lines y = x and y = -2x + 3 found by solving the system of equations.

    solve : y = -2x + 3 , y = x , solution: (1 , 1) which also the point of intersection. The y coordinate = 1 and is also the height.

    The length of the base is the x intercept of the line y = -2x + 3 which is x = 3/2.

    Area of the shaded triangle = (1/2)(1)(3/2) = 3/4
  5. The formula for the area using two sides and the internal angle they make, may be written as follows

    18 = (1/2) * 5 * 10*sin(A)

    which gives: sin(A) = 18/25

    We now use the cosine formula to fin the length x of the third side opposing angle A as follows:

    x2 = 52 + 102 - 2*5*10*cos(A)

    with cos(A) = sqrt(1 - sin(A)2)

    Substitute in the expression for x2 and solve for x to obtain x = 7.46 (approximated to 3 significant digits)
  6. The area of triangle BOC is 15 and is given by (1/2) * BO * OC * sin(BOC)

    The area of triangle AOD is given by (1/2) * AO * OD * sin(AOD)

    Note that angle BOC and AOD are equal.

    By the theorem of the intersecting chords we have: AO * OC = BO * OD

    Which may be written as: AO / BO = OD / OC = 10 / 5 = 2

    The ratios AO / BO and OD / OC are both equal to 2, hence their product is equal to 4 as follows

    (AO * OD) / (BO * OC) = 4

    Which gives: AO * OD = 4 * (BO * OC)

    Hence the area of triangle AOD is 4 times the area of triangle BOC and is equal to 60.

    geometry grade 11 solution to problem 6



More High School Math (Grades 10, 11 and 12) - Free Questions and Problems With Answers

More Middle School Math (Grades 6, 7, 8, 9) - Free Questions and Problems With Answers

More Primary Math (Grades 4 and 5) with Free Questions and Problems With Answers

Author - e-mail

Home Page

Step by Step Calculator to Find Domain of a Function New ! Free Trigonometry Questions with Answers Interactive HTML5 Math Web Apps for Mobile LearningNew !
Free Online Graph Plotter for All Devices
Home Page -- HTML5 Math Applets for Mobile Learning -- Math Formulas for Mobile Learning -- Algebra Questions -- Math Worksheets -- Free Compass Math tests Practice
Free Practice for SAT, ACT Math tests -- GRE practice -- GMAT practice Precalculus Tutorials -- Precalculus Questions and Problems -- Precalculus Applets -- Equations, Systems and Inequalities -- Online Calculators -- Graphing -- Trigonometry -- Trigonometry Worsheets -- Geometry Tutorials -- Geometry Calculators -- Geometry Worksheets -- Calculus Tutorials -- Calculus Questions -- Calculus Worksheets -- Applied Math -- Antennas -- Math Software -- Elementary Statistics High School Math -- Middle School Math -- Primary Math
Math Videos From Analyzemath
Author - e-mail


Updated: 2 April 2013

Copyright © 2003 - 2014 - All rights reserved