Logarithmic and Exponential Equations – Questions with Solutions

Below is a collection of practice questions involving exponential and logarithmic expressions and equations. All solutions are provided at the bottom of the page and are solved without using a calculator.


Question 1 – Exponential Expressions

Evaluate the following expressions without using a calculator:

A. \(\;10^{4^{0.5}}\)

B. \(\;10^{\frac{\log(9)}{2}}\)

C. \(\;e^{3\ln(4)}\)

D. \(\;10^{-2\log(4)}\)

E. \(\;e^{2\ln(4)-\ln(16)}\)


Question 2 – Logarithmic Expressions

Evaluate the following logarithmic expressions:

A. \(\;\log_{9}(3)\)

B. \(\;\log_{2}\!\left(\frac{1}{8}\right)\)

C. \(\;\log_{2}(400)-\log_{2}(100)\)

D. \(\;\log_{8}(4)\)

E. \(\;\log_{5}(600)-\log_{5}(24)\)


Question 3 – Exponential Equations

Solve the following exponential equations :

A. \(\;e^{x}=4\)

B. \(\;e^{x}=\pi^{2}\)

C. \(\;4^{\log_{4}(3x-2)}=10\)

D. \(\;10^{\log_{10}(3x)}=15\)

E. \(\;3^{x+1}+3^{x}+3^{x-1}=39\)


Question 4 – Logarithmic Equations

Solve the following logarithmic equations :

A. \(\;\ln(\ln x)=4\)

B. \(\;\ln(x)-\ln(4)=2\ln(x)-\ln(16)\)

C. \(\;(\ln x)^5=25^{\frac{5}{2}}\)

D. \(\;\log(x-1)=\log(6)-\log(x)\)

E. \(\;\log_{3}(3^{x+1}-18)=2\)

F. \(\;\log_{7}(x)+\log_{x}(7)=2\)

G. \(\;\log_{x}(27)=\frac{3}{4}\)


Solutions

Solution to Question 1

\[ \begin{aligned} \text{A. } &10^{4^{0.5}} = 10^{4 \times 0.5} = 10^2 = 100 \\[6pt] \text{B. } &10^{\frac{\log(9)}{2}} = 10^{\log(9^{1/2})} = 3 \\[6pt] \text{C. } &e^{3\ln(4)} = e^{\ln(4^3)} = 4^3 = 64 \\[6pt] \text{D. } &10^{-2\log(4)} = 10^{\log(4^{-2})} = 4^{-2} = \frac{1}{16} \\[6pt] \text{E. } &e^{2\ln(4)-\ln(16)} = e^{\ln(16)-\ln(16)} = e^0 = 1 \end{aligned} \]

Solution to Question 2

\[ \begin{aligned} \text{A. } &\log_{9}(3)=\log_{9}(9^{1/2})=\frac{1}{2} \\[6pt] \text{B. } &\log_{2}\!\left(\frac{1}{8}\right)=\log_{2}(2^{-3})=-3 \\[6pt] \text{C. } &\log_{2}(400)-\log_{2}(100)=\log_{2}(4)=2 \\[6pt] \text{D. } &\log_{8}(4)=\log_{8}(8^{2/3})=\frac{2}{3} \\[6pt] \text{E. } &\log_{5}(600)-\log_{5}(24)=\log_{5}(25)=2 \end{aligned} \]

Solution to Question 3

\[ \begin{aligned} \text{A. } &x=\ln(4) \\[6pt] \text{B. } &x=\ln(\pi^2)=2\ln(\pi) \\[6pt] \text{C. } &3x-2=10 \Rightarrow x=4 \\[6pt] \text{D. } &3x=15 \Rightarrow x=5 \\[6pt] \text{E. } &3^{x+1}+3^{x}+3^{x-1}=39 \\ &\Rightarrow 3^{x}(3+1+\tfrac{1}{3})=39 \\ &\Rightarrow 3^{x}=9 \Rightarrow x=2 \end{aligned} \]

Solution to Question 4

\[ \begin{aligned} \text{A. } &\ln x = e^4 \Rightarrow x=e^{e^4} \\[6pt] \text{B. } &\ln\!\left(\frac{x}{4}\right)=\ln\!\left(\frac{x^2}{16}\right) \Rightarrow x=4 \\[6pt] \text{C. } &(\ln x)^5=5^5 \Rightarrow \ln x=5 \Rightarrow x=e^5 \\[6pt] \text{D. } &\log(x-1)=\log\!\left(\frac{6}{x}\right) \Rightarrow x=3 \\[6pt] \text{E. } &3^{x+1}-18=9 \Rightarrow x=2 \\[6pt] \text{F. } &\frac{\ln 7}{\ln x}+\frac{\ln x}{\ln 7}=2 \Rightarrow (\ln 7-\ln x)^2=0 \Rightarrow x=7 \\[6pt] \text{G. } &x^{3/4}=27 \Rightarrow x=3^4 \end{aligned} \]

More Practice and References

More math questions with detailed solutions