Convert Rectangular to Polar Coordinates - Calculator

Rectangular and Polar Coordinates

Convert rectangular to polar two dimensional coordinates using a calculator.
The rectangular coordinates \( (x,y) \) and polar coordinates \( (R,\theta) \) are related as follows. \[ y = R \sin \theta \quad \text{and} \quad x = R \cos \theta \] \[ R^2 = x^2 + y^2 \quad \text{and} \quad \tan \theta = \frac{y}{x} \] polar-rectangular conversion of coordinates. The calculator finds \( R \) using \( R = \sqrt{x^2 + y^2} \). Then finds the quadrant using the signs of \( x \) and \( y \) and solves any of the equations: \[ x = R \cos \theta \quad \text{or} \quad y = R \sin \theta \] for \( \theta \) such that \( \theta\) is in the range \( (-\pi, \pi] \) or in degrees \( (-180^\circ, 180^\circ] \).

Use Calculator to Convert Rectangular to Polar Coordinates

1 - Enter x and y and press the button "Convert".


(x , y) = ( , )
decimals =


\( R = \)
\( \theta = \) ) (Radians)
\( \theta = \) ) (Degrees)

More References and links

Polar Coordinates and Equations
Maths Calculators and Solvers.