Finding Domain and Range of Arcsine Functions

Learn how to determine domain and range of arcsine functions with detailed step-by-step solutions.

Theorem

The arcsine function is defined as:

\[ y = \arcsin(x) \quad \text{is equivalent to} \quad \sin(y) = x \]

with the constraints:

\[ -1 \le x \le 1 \quad \text{and} \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2} \]

Question 1

Find the domain and range of \( y = \arcsin(x - 1) \).

Solution

Domain: We impose the condition on the argument \((x - 1)\) based on the domain of \(\arcsin(x)\):

\[ -1 \le (x - 1) \le 1 \]

Solving the inequality:

\[ 0 \le x \le 2 \]

This shows the graph of \( y = \arcsin(x - 1) \) is the graph of \( y = \arcsin(x) \) shifted one unit to the right.

Range: Horizontal shifts do not affect the range. Therefore:

\[ -\frac{\pi}{2} \le y \le \frac{\pi}{2} \]

Question 2

Find the domain and range of \( y = -\arcsin(x + 2) \).

Solution

Domain: Apply the domain condition to \((x + 2)\):

\[ -1 \le (x + 2) \le 1 \]

Solving:

\[ -3 \le x \le -1 \]

This represents a horizontal shift two units to the left.

Range: Start with the range of \(\arcsin(x + 2)\):

\[ -\frac{\pi}{2} \le \arcsin(x + 2) \le \frac{\pi}{2} \]

Multiply by \(-1\) (reverse inequality signs):

\[ \frac{\pi}{2} \ge -\arcsin(x + 2) \ge -\frac{\pi}{2} \]

Rewriting in standard order:

\[ -\frac{\pi}{2} \le -\arcsin(x + 2) \le \frac{\pi}{2} \]

Thus the range is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

Question 3

Find the domain and range of \( y = -2\arcsin(3x - 1) \).

Solution

Domain: Apply domain condition to \((3x - 1)\):

\[ -1 \le (3x - 1) \le 1 \]

Solving:

\[ 0 \le x \le \frac{2}{3} \]

Range: Start with:

\[ -\frac{\pi}{2} \le \arcsin(3x - 1) \le \frac{\pi}{2} \]

Multiply by \(-2\) (reverse inequality signs):

\[ \pi \ge -2\arcsin(3x - 1) \ge -\pi \]

Thus the range is \([-\pi, \pi]\).

Question 4

Find the domain and range of \( y = 4\arcsin(-2(x - 1)) - \frac{\pi}{2} \).

Solution

Domain: Apply domain condition to \((-2(x - 1))\):

\[ -1 \le -2(x - 1) \le 1 \]

Solving:

\[ \frac{1}{2} \le x \le \frac{3}{2} \]

Range: Start with:

\[ -\frac{\pi}{2} \le \arcsin(-2(x - 1)) \le \frac{\pi}{2} \]

Multiply by 4:

\[ -2\pi \le 4\arcsin(-2(x - 1)) \le 2\pi \]

Subtract \(\frac{\pi}{2}\):

\[ -\frac{5\pi}{2} \le 4\arcsin(-2(x - 1)) - \frac{\pi}{2} \le \frac{3\pi}{2} \]

Thus the range is \(\left[-\frac{5\pi}{2}, \frac{3\pi}{2}\right]\).