Integral of \( \cos^3 x \)
\( \) \( \)\( \)\( \)\( \) \( \)\( \)\( \)
Find the integral
\[ \int \cos^3 x \; dx \]
Write the integral as
\[ \int \cos^3 x \; dx = \int \cos^2 x \cos x \; dx\]
Use the trigonometric identity \( \; \cos^2 x = 1 - \sin^2 x \) to write
\[ \int \cos^3 x \; dx = \int (1 - \sin^2 x) \cos x \; dx\]
Expand the integrand and rewrite the integral as
\[ \int \cos^3 x \; dx = \int \cos x \; dx - \int \sin^2 x \cos x \; dx \]
Use Integration by Substitution : Let \( u = \sin x \) and hence \( \dfrac{du}{dx} = \cos x \) or \( du = \cos x \; dx \). The integral is given by
\[ \int \cos^3 x \; dx = \int \cos x \; dx - \int u^2 \; du \]
Use integral formulas to evaluate the above and write
\[ \int \cos^3 x \; dx = \sin x - \dfrac{1}{3} u^3 + c \]
Substitute back \( u = \sin x \) to find the final answer
\[ \boxed { \int \cos^3 x \; dx = \sin x - \dfrac{1}{3} \sin^3 x + c } \]
More References and Links
- Table of Integral Formulas
-
University Calculus - Early Transcendental - Joel Hass, Maurice D. Weir, George B. Thomas, Jr., Christopher Heil - ISBN-13 : 978-0134995540
-
Calculus - Gilbert Strang - MIT - ISBN-13 : 978-0961408824
- Calculus - Early Transcendental - James Stewart - ISBN-13: 978-0-495-01166-8