Processing math: 100%

Integral of cos3x

Find the integral cos3xdx Write the integral as cos3xdx=cos2xcosxdx Use the trigonometric identity cos2x=1sin2x to write
cos3xdx=(1sin2x)cosxdx
Expand the integrand and rewrite the integral as cos3xdx=cosxdxsin2xcosxdx Use Integration by Substitution: Let u=sinx and hence dudx=cosx or du=cosxdx. The integral is given by cos3xdx=cosxdxu2du Use integral formulas to evaluate the above and write cos3xdx=sinx13u3+c Substitute back u=sinx to find the final answer cos3xdx=sinx13sin3x+c



More References and Links

  1. Table of Integral Formulas
  2. University Calculus - Early Transcendental - Joel Hass, Maurice D. Weir, George B. Thomas, Jr., Christopher Heil - ISBN-13 : 978-0134995540
  3. Calculus - Gilbert Strang - MIT - ISBN-13 : 978-0961408824
  4. Calculus - Early Transcendental - James Stewart - ISBN-13: 978-0-495-01166-8