Find the integral
∫cos3xdx
Write the integral as
∫cos3xdx=∫cos2xcosxdx
Use the trigonometric identity cos2x=1−sin2x to write
∫cos3xdx=∫(1−sin2x)cosxdx
Expand the integrand and rewrite the integral as
∫cos3xdx=∫cosxdx−∫sin2xcosxdx
Use Integration by Substitution: Let u=sinx and hence dudx=cosx or du=cosxdx. The integral is given by
∫cos3xdx=∫cosxdx−∫u2du
Use integral formulas to evaluate the above and write
∫cos3xdx=sinx−13u3+c
Substitute back u=sinx to find the final answer
∫cos3xdx=sinx−13sin3x+c