\( e^{\ln(x^2+1)} \)
Solution
(a) \( \log_9 1 = 0 \)
(b)
\[
\log_2(4 \times 16)
= \log_2 4 + \log_2 16
= \log_2 2^2 + \log_2 2^4
= 2 + 4 = 6
\]
(c)
\[
\log_3\!\left(\dfrac{3}{27}\right)
= \log_3 3 - \log_3 27
= 1 - 3 = -2
\]
(d) \( \log_4 4^6 = 6 \)
(e) \( \log_2 2^{x+1} = x+1 \)
(f) \( e^{\ln(x^2+1)} = x^2+1 \)
Rules of Exponential Functions
Let \(x\) and \(y\) be real numbers and let \(a > 0\).
-
\( a^n = a \times a \times \cdots \times a \) (\(n\) times)
Example: \( 2^4 = 16 \)
-
\( a^0 = 1 \)
Example: \( 100^0 = 1 \)
-
\( a^{-x} = \dfrac{1}{a^x} \)
Example: \( 6^{-2} = \dfrac{1}{6^2} \)
-
\( a^x a^y = a^{x+y} \)
Example: \( 4^2 \cdot 4^3 = 4^5 \)
-
\( \dfrac{a^x}{a^y} = a^{x-y} \)
Example: \( \dfrac{5^6}{5^4} = 5^2 \)
-
\( (a^x)^y = a^{xy} \)
Example: \( (7^2)^3 = 7^6 \)
Example 2
Use the rules of the exponential functions to simplify the following expressions
- \( 2^3 2^{-3} \)
- b) \( \dfrac{4^3 4^x}{4^{2x}} \)
- c) \( {(4^2)}^{2x} \)
Solution
- \( 2^3 2^{-3} = 2^{3-3} = 3^0 = 1 \) , use rules 4 and 2.
- \( \dfrac{4^3 4^x}{4^{2x}} = \dfrac{4^{3+x}}{4^{2x}} = 4^{3+x-2x} = 4^{3-x} \) , use rules 4 and 5.
- \( {(4^2)}^{2x} = 4^{ 2 \times 2x } = 4^{4x} = (4^4)^{x} = 256^x \) , use rule 6
Inverse Rule: Logarithmic and Exponential Functions
Logarithmic and exponential functions are inverses of each other:
\[
\log_b x = y \iff x = b^y
\]
Notes:
- The bases of the logarithmic and exponential forms are the same.
- The logarithm gives the exponent to which the base must be raised to obtain the number.
Example 3
Write each exponential equation in logarithmic form.
- \( 2^4 = 16 \),
- \( 3^3 = 27 \),
- \( e^5 = y \)
Solution
- \( \log_2 16 = 4 \)
- \( \log_3 27 = 3 \)
- \( \ln y = 5 \) (since \(y = e^5\))
Example 4
Write each logarithmic equation in exponential form.
- \( \log_b 27 = x \),
- \( \log_{36} 6 = \tfrac12 \),
- \( \log_2\!\left(\tfrac18\right) = -3 \),
- \( \log_8 2 = \tfrac13 \)
Solution
- \( 27 = b^x \)
- \( 6 = 36^{1/2} \)
- \( \tfrac18 = 2^{-3} \)
- \( 2 = 8^{1/3} \)
Example 5
Solve the equation \( \log_3 x = 4 \).
Solution
\[
x = 3^4 = 81
\]
Example 6
Solve each equation.
- \( \log_3 x = 5 \)
- \( \log_2(x-3) = 2 \)
- \( 2\log_3(-x+1) = 6 \)
Solution
- \( x = 3^5 \)
-
\(
x-3 = 2^2 = 4 \Rightarrow x = 7
\)
-
\(
\log_3(-x+1) = 3 \Rightarrow -x+1 = 27 \Rightarrow x = -26
\)
More References