Solutions to Questions on How to Reduce Fractions in Maths
Detailed solutions and explanations to the questions on how to reduce fractions are presented.
A
Reduce Fractions Calculator may be used to check your answers.
Detailed Solutions to questions below
-
Reduce the fractions
-
We start with the prime factorization of numerator 24 and denominator 36:
\[
24 = 2 \times 2 \times 2 \times 3, \quad 36 = 2 \times 2 \times 3 \times 3
\]
Rewrite the fraction using the factorization:
\[
\dfrac{24}{36} = \dfrac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3}
\]
Simplify by canceling common factors:
\[
\dfrac{24}{36} = \dfrac{\cancel{2} \times \cancel{2} \times 2 \times \cancel{3}}{\cancel{2} \times \cancel{2} \times \cancel{3} \times 3} = \dfrac{2}{3}
\]
-
Prime factorization of numerator 52 and denominator 120:
\[
52 = 2 \times 2 \times 13, \quad 120 = 2 \times 2 \times 2 \times 3 \times 5
\]
Rewrite the fraction:
\[
\dfrac{52}{120} = \dfrac{2 \times 2 \times 13}{2 \times 2 \times 2 \times 3 \times 5}
\]
Simplify:
\[
\dfrac{52}{120} = \dfrac{\cancel{2} \times \cancel{2} \times 13}{\cancel{2} \times \cancel{2} \times 2 \times 3 \times 5} = \dfrac{13}{30}
\]
-
Prime factorization of numerator 156 and denominator 208:
\[
156 = 2 \times 2 \times 3 \times 13, \quad 208 = 2 \times 2 \times 2 \times 2 \times 13
\]
Rewrite the fraction:
\[
\dfrac{156}{208} = \dfrac{2 \times 2 \times 3 \times 13}{2 \times 2 \times 2 \times 2 \times 13}
\]
Simplify:
\[
\dfrac{156}{208} = \dfrac{\cancel{2} \times \cancel{2} \times 3 \times \cancel{13}}{\cancel{2} \times \cancel{2} \times 2 \times 2 \times \cancel{13}} = \dfrac{3}{4}
\]
-
Prime factorization of numerator 122 and denominator 6100:
\[
122 = 2 \times 61, \quad 6100 = 2 \times 2 \times 5 \times 5 \times 61
\]
Rewrite the fraction:
\[
\dfrac{122}{6100} = \dfrac{2 \times 61}{2 \times 2 \times 5 \times 5 \times 61}
\]
Simplify:
\[
\dfrac{122}{6100} = \dfrac{\cancel{2} \times \cancel{61}}{\cancel{2} \times 2 \times 5 \times 5 \times \cancel{61}} = \dfrac{1}{50}
\]
-
Reduce and compare each pair of fractions.
-
Prime factorization and simplification of the pair:
\[
\dfrac{26}{39} = \dfrac{2 \times 13}{3 \times 13} = \dfrac{2}{3}
\]
\[
\dfrac{14}{42} = \dfrac{2 \times 7}{2 \times 3 \times 7} = \dfrac{1}{3}
\]
Comparing, \( \dfrac{2}{3} > \dfrac{1}{3} \), so \( \dfrac{26}{39} > \dfrac{14}{42} \).
-
Prime factorization and simplification:
\[
\dfrac{45}{75} = \dfrac{3 \times 3 \times 5}{3 \times 5 \times 5} = \dfrac{3}{5}
\]
\[
\dfrac{52}{65} = \dfrac{2 \times 2 \times 13}{5 \times 13} = \dfrac{4}{5}
\]
Comparing, \( \dfrac{4}{5} > \dfrac{3}{5} \), so \( \dfrac{52}{65} > \dfrac{45}{75} \).
Links and References