Grade 8 Questions on Angles with Solutions and Explanations
Detailed solutions and full explanations to grade 8 math questions on angles are presented.
Find the unknown angle(s) in the figures below.
.
Solution
The sum of all 3 interior angles of a triangle is equal to \(180^\circ\). Hence
\[
92^\circ + 27^\circ + x = 180^\circ
\]
Solve for \(x\)
\[
x = 180^\circ - (92^\circ + 27^\circ) = 61^\circ
\]
.
Solution
Note that it is a right triangle. The sum of all 3 interior angles of the right triangle is equal to \(180^\circ\). Hence
\[
y + 34^\circ + 90^\circ = 180^\circ
\]
Solve for \(y\)
\[
y = 180^\circ - (90^\circ + 34^\circ) = 56^\circ
\]
.
Solution
Angle \(y\) and an angle of measure \(56^\circ\) are supplementary. Hence
\[
y + 56^\circ = 180^\circ
\]
Solve for \(y\)
\[
y = 180^\circ - 56^\circ = 124^\circ
\]
Angle \(x\) and an angle of measure \(144^\circ\) are supplementary. Hence
\[
x + 144^\circ = 180^\circ
\]
Solve for \(x\)
\[
x = 180^\circ - 144^\circ = 36^\circ
\]
The sum of angles \(x\), \(y\), and \(z\) of the triangle is equal to \(180^\circ\).
\[
x + y + z = 180^\circ
\]
Substitute \(x\) and \(y\) by their values found above:
\[
36^\circ + 124^\circ + z = 180^\circ
\]
Solve for \(z\)
\[
z = 20^\circ
\]
.
Solution
Let \(z\) be the third angle of the triangle on the right.
The sum of the interior angles in the triangle on the right side is equal to \(180^\circ\). Hence
\[
26^\circ + 26^\circ + z = 180^\circ
\]
\[
z = 180^\circ - 26^\circ - 26^\circ = 128^\circ
\]
Angles \(z\) and \(y\) are supplementary. Hence
\[
z + y = 180^\circ
\]
Solve for \(y\)
\[
y = 180^\circ - z = 180^\circ - 128^\circ = 52^\circ
\]
The sum of the interior angles in the triangle on the left is equal to \(180^\circ\). Hence
\[
x + y + 64^\circ = 180^\circ
\]
Solve for \(x\)
\[
x = 180^\circ - 64^\circ - 52^\circ = 64^\circ
\]
.
Solution
Angle \(z\) and the angle of measure \(133^\circ\) are supplementary angles. Hence
\[
z + 133^\circ = 180^\circ
\]
\[
z = 180^\circ - 133^\circ = 47^\circ
\]
The angles of the lower triangle add up to \(180^\circ\). Hence
\[
33^\circ + 133^\circ + x = 180^\circ
\]
\[
x = 180^\circ - 33^\circ - 133^\circ = 14^\circ
\]
The sum of the measures of the angles of the upper triangle is equal to \(180^\circ\). Hence
\[
y + z + 114^\circ = 180^\circ
\]
\[
y = 180^\circ - 114^\circ - z, \quad z = 47^\circ \text{ (found before)}
\]
\[
y = 180^\circ - 114^\circ - 47^\circ = 19^\circ
\]
.
Solution
The sum of the angles of the triangle on the right side is equal to \(180^\circ\). Hence
\[
w + 131^\circ + 32^\circ = 180^\circ
\]
\[
w = 180^\circ - 131^\circ - 32^\circ = 17^\circ
\]
Angle \(v\) and the angle with measure \(132^\circ\) are supplementary. Hence
\[
132^\circ + v = 180^\circ
\]
\[
v = 180^\circ - 132^\circ = 48^\circ
\]
The three angles of the triangle in the middle add up to \(180^\circ\). Hence
\[
v + z + 122^\circ = 180^\circ
\]
\[
z = 180^\circ - 122^\circ - v
\]
\[
z = 180^\circ - 122^\circ - 48^\circ = 10^\circ, \quad v = 48^\circ \ \text{(found above)}
\]
Angle \(x\) and the angle with measure \(122^\circ\) are supplementary. Hence
\[
x + 122^\circ = 180^\circ
\]
\[
x = 180^\circ - 122^\circ = 58^\circ
\]
The three angles of the triangle on the left side add up to \(180^\circ\). Hence
\[
x + 43^\circ + y = 180^\circ
\]
\[
y = 180^\circ - 43^\circ - x
\]
\[
y = 180^\circ - 43^\circ - 58^\circ = 79^\circ, \quad x = 58^\circ \ \text{(found above)}
\]
More References and Links
Middle School Math (Grades 6, 7, 8, 9) - Free Questions and Problems With Answers
High School Math (Grades 10, 11 and 12) - Free Questions and Problems With Answers
Primary Math (Grades 4 and 5) with Free Questions and Problems With Answers