Sum of Sine and Cosine Functions

Explore sums involving sine and cosine functions of the form:

\[ f(x) = a\sin(kx) + b\cos(kx) \]

It can be shown analytically that this sum can be rewritten as a single cosine function with a phase shift:

\[ a\sin(kx) + b\cos(kx) = A\cos(kx - C) \]

This transformation is useful for analyzing amplitude, period, and phase shift in trigonometric expressions.

Derivation of the General Formula

To express \(a\sin(kx) + b\cos(kx)\) as \(A\cos(kx - C)\), we use the cosine subtraction formula:

\[ \cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta \]

Setting \(\alpha = kx\) and \(\beta = C\), we expand:

\[ A\cos(kx - C) = A\cos(kx)\cos(C) + A\sin(kx)\sin(C)\]

For this to equal \(a\sin(kx) + b\cos(kx)\), the coefficients of \(\sin(kx)\) and \(\cos(kx)\) must match:

\(A\sin(C) = a \quad \text{(coefficient of } \sin(kx)\text{)}\)
\(A\cos(C) = b \quad \text{(coefficient of } \cos(kx)\text{)}\)

Finding the Amplitude \(A = \sqrt{a^2 + b^2}\)

Square and add the two equations:

\[ \begin{aligned} [A\sin(C)]^2 + [A\cos(C)]^2 &= a^2 + b^2 \\ A^2(\sin^2(C) + \cos^2(C)) &= a^2 + b^2 \\ A^2 &= a^2 + b^2 \quad \text{(using } \sin^2(C) + \cos^2(C) = 1\text{)} \end{aligned} \]

Taking the positive root (amplitude is positive):

\[ \boxed{A = \sqrt{a^2 + b^2}} \]

Finding the Phase Shift \(C\) with \(\tan(C) = \frac{a}{b}\)

Divide the first equation by the second (assuming \(b \neq 0\)):

\[ \frac{A\sin(C)}{A\cos(C)} = \frac{a}{b} \quad \Rightarrow \quad \tan(C) = \frac{a}{b} \]

Thus: \[ \boxed{\tan(C) = \frac{a}{b}} \]

Determining the Correct Quadrant for \(C\)

Since \(\tan(C)\) has period \(\pi\), the calculator's \(\arctan(a/b)\) gives a value between \(-\pi/2\) and \(\pi/2\). The signs of \(a\) and \(b\) determine the actual quadrant:

Examples

Here are three examples demonstrating the transformation step-by-step.

Example 1: \(a = 3\), \(b = 4\), \(k = 2\)

Rewrite \(3\sin(2x) + 4\cos(2x)\) as \(A\cos(2x - C)\).

Step 1: Compute amplitude \(A\):

\[ A = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \]

Step 2: Compute phase shift \(C\):

\[ \tan(C) = \frac{3}{4} = 0.75 \quad \Rightarrow \quad C = \arctan(0.75) \approx 0.6435 \text{ radians} \]

Since \(a>0, b>0\), \(C\) is in Quadrant I, so no adjustment is needed.

Step 3: Write the result:

\[ 3\sin(2x) + 4\cos(2x) = 5\cos(2x - 0.6435) \]

Verification: Expanding \(5\cos(2x - 0.6435)\) using the cosine subtraction formula yields \(4\cos(2x) + 3\sin(2x)\).

Example 2: \(a = 1\), \(b = -\sqrt{3}\), \(k = 1\)

Rewrite \(\sin(x) - \sqrt{3}\cos(x)\) as \(A\cos(x - C)\).

Step 1: Compute amplitude \(A\):

\[ A = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{4} = 2 \]

Step 2: Compute phase shift \(C\):

\[ \tan(C) = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}} \approx -0.5774 \]

Calculator gives \(C = \arctan(-1/\sqrt{3}) = -\pi/6\). Since \(a>0, b<0\), \(C\) is in Quadrant II, so add \(\pi\):

\[ C = -\frac{\pi}{6} + \pi = \frac{5\pi}{6} \text{ radians} \]

Step 3: Write the result:

\[ \sin(x) - \sqrt{3}\cos(x) = 2\cos\left(x - \frac{5\pi}{6}\right) \]

Example 3: \(a = -2\), \(b = 2\), \(k = 3\)

Rewrite \(-2\sin(3x) + 2\cos(3x)\) as \(A\cos(3x - C)\).

Step 1: Compute amplitude \(A\):

\[ A = \sqrt{(-2)^2 + 2^2} = \sqrt{8} = 2\sqrt{2} \]

Step 2: Compute phase shift \(C\):

\[ \tan(C) = \frac{-2}{2} = -1 \]

Calculator gives \(C = \arctan(-1) = -\pi/4\). Since \(a<0, b>0\), \(C\) is in Quadrant IV, so no adjustment is needed.

Step 3: Write the result:

\[ -2\sin(3x) + 2\cos(3x) = 2\sqrt{2}\cos\left(3x + \frac{\pi}{4}\right) \]

Note: \(\cos(3x + \pi/4) = \cos(3x - (-\pi/4))\), so \(C = -\pi/4\).

Summary

The sum \(a\sin(kx) + b\cos(kx)\) can always be rewritten as a single cosine function with amplitude and phase shift:

\[ a\sin(kx) + b\cos(kx) = A\cos(kx - C) \]

where:

\[ A = \sqrt{a^2 + b^2}, \quad \tan(C) = \frac{a}{b} \]

The phase shift \(C\) must be chosen in the correct quadrant based on the signs of \(a\) and \(b\). This transformation simplifies analysis of the function's amplitude, period, and phase shift.


Further Reading