Amplitude, Period, Range, and Phase Shift of Trigonometric Functions
Practice determining the amplitude, period, range, and phase shift of trigonometric functions.
Multiple-choice questions are followed by detailed step-by-step solutions.
Practice Questions
Question 1
If \( y = \cos x \), what is the maximum value of \( y \)?
- 1
- -1
- \(\pi\)
- \(2\pi\)
Question 2
What is the period of \( f(x) = 2\sin(5x) \)?
- \(\pi/5\)
- \(2\pi/5\)
- \(5\pi\)
- \(\pi\)
Question 3
What is the amplitude of \( f(x) = -3\cos(\pi x) \)?
- 3
- -3
- \(\pi\)
- 2
Question 4
Which of the following functions has the greatest period?
- \(20\sin(2x-\pi/2)\)
- \(-\sin(\pi x)\)
- \(2\sin(0.1x)\)
- \(-\sin(0.1\pi x)\)
Question 5
What is the range of \( f(x) = -4\cos(2x-3) \)?
- \((0,4)\)
- \([0,4]\)
- \((-4,4)\)
- \([-4,4]\)
Question 6
What is the phase shift of \( f(x) = 7\sin(2x-\pi/3) \)?
- \(\pi/3\)
- \(\pi/6\)
- \(-\pi/6\)
- \(-\pi/3\)
Question 7
What is the range of \( f(x) = -6\cos(\pi x-\pi/2)+2 \)?
- \([-6,6]\)
- \([-4,8]\)
- \([0,8]\)
- \([-6,0]\)
Question 8
What is the amplitude of \( f(x) = 4\sin x \cos x \)?
- 4
- 3
- 2
- 1
Question 9
What is the period of \( f(x) = 0.5\sin x \cos x \)?
- 0.5
- \(2\pi\)
- \(\pi/2\)
- \(\pi\)
Question 10
What is the amplitude of \( f(x) = \sin x + \cos x \)?
- \(\sqrt{2}\)
- \(\sqrt{2}/2\)
- \(2\sqrt{2}\)
- 2
Step-by-Step Solutions
-
Q1:
The cosine function satisfies \( -1 \le \cos x \le 1 \).
Maximum value: \(1\).
-
Q2:
For \( \sin(bx) \), the period is \( \frac{2\pi}{b} \).
Here \( b = 5 \), so
\[
T = \frac{2\pi}{5}
\]
-
Q3:
Amplitude is the absolute value of the coefficient:
\[
| -3 | = 3
\]
-
Q4:
Period comparison:
- \(2x \Rightarrow T = \pi\)
- \(\pi x \Rightarrow T = 2\)
- \(0.1x \Rightarrow T = 20\pi\)
- \(0.1\pi x \Rightarrow T = 20\)
Largest period: \(2\sin(0.1x)\).
-
Q5:
Base range of cosine: \([-1,1]\).
Multiply by 4:
\[
[-4,4]
\]
-
Q6:
Phase shift formula:
\[
\text{Phase shift} = \frac{c}{b}
\]
Here \( b=2 \), \( c=\pi/3 \):
\[
\frac{\pi/3}{2} = \frac{\pi}{6}
\]
-
Q7:
Amplitude: 6 → range \([-6,6]\).
Vertical shift: +2:
\[
[-6+2,6+2] = [-4,8]
\]
-
Q8:
Use identity:
\[
\sin x \cos x = \frac{1}{2}\sin(2x)
\]
So:
\[
f(x) = 2\sin(2x)
\]
Amplitude = 2.
-
Q9:
\[
0.5\sin x \cos x = 0.25\sin(2x)
\]
Period of \( \sin(2x) \) is:
\[
\pi
\]
-
Q10:
Rewrite:
\[
\sin x + \cos x = \sqrt{2}\sin\left(x+\frac{\pi}{4}\right)
\]
Amplitude = \( \sqrt{2} \).
More Trigonometry Problems with Solutions
Trigonometry Problems