Find Inverse of Square Root Functions
This tutorial provides step-by-step examples on how to find the
inverse
of square root functions, including how to determine their
domain and range.
Example 1
Find the inverse function, its domain, and range of the function:
\( f(x) = \sqrt{x - 1} \)
Solution:
- Domain of \(f\): \([1, +\infty)\), Range of \(f\): \([0, +\infty)\).
- Write \(f\) as an equation: \( y = \sqrt{x - 1} \)
- Square both sides: \( y^2 = x - 1 \)
- Solve for \(x\): \( x = y^2 + 1 \)
- Swap \(x\) and \(y\) to get the inverse: \( f^{-1}(x) = x^2 + 1 \)
- Domain and range of \(f^{-1}\): Domain: \([0, +\infty)\), Range: \([1, +\infty)\)
Example 2
Find the inverse, its domain, and range of:
\( f(x) = \sqrt{x + 3} - 5 \)
Solution:
- Domain: \(x + 3 \ge 0 \Rightarrow x \ge -3\) → \([-3, +\infty)\)
- Range: \([-5, +\infty)\)
- Write as equation: \( y = \sqrt{x + 3} - 5 \Rightarrow \sqrt{x + 3} = y + 5 \)
- Square both sides: \( x + 3 = (y + 5)^2 \)
- Solve for \(x\): \( x = (y + 5)^2 - 3 \)
- Swap \(x\) and \(y\): \( f^{-1}(x) = (x + 5)^2 - 3 \)
- Domain and range of \(f^{-1}\): Domain: \([-5, +\infty)\), Range: \([-3, +\infty)\)
Example 3
Find the inverse, its domain, and range of:
\( f(x) = -\sqrt{x^2 - 1}, \quad x \le -1 \)
Solution:
- Domain: \((-\infty, -1]\), Range: \((-\infty, 0]\)
- Write as equation: \( y = -\sqrt{x^2 - 1} \)
- Square both sides: \( y^2 = x^2 - 1 \Rightarrow x^2 = y^2 + 1 \)
- Select solution using domain: \( x = -\sqrt{y^2 + 1} \)
- Swap \(x\) and \(y\) for the inverse: \( f^{-1}(x) = -\sqrt{x^2 + 1} \)
- Domain and range of \(f^{-1}\): Domain: \([0, +\infty)\), Range: \((-\infty, -1]\)
Exercises
Find the inverse, its domain, and range of:
- \( f(x) = -2\sqrt{x + 2} - 6 \)
- \( g(x) = 2\sqrt{x^2 - 4} + 4, \quad x \ge 2 \)
Answers:
- \( f^{-1}(x) = \frac{1}{4}(x + 6)^2 - 2 \), Domain: \((-\infty, -6]\), Range: \([-2, +\infty)\)
- \( g^{-1}(x) = \sqrt{\frac{(x - 4)^2}{4} + 4} \), Domain: \([4, +\infty)\), Range: \([2, +\infty)\)
More References on Inverse Functions