Indeterminate forms of Limits
Examples with detailed solutions and exercises that solves limits questions related to indeterminate forms such as:
\[
\dfrac{\infty}{\infty}, \quad 0^0, \quad \infty^0, \quad 1^\infty, \quad \infty \cdot 0, \quad \infty - \infty
\]
Theorem
A second version of L'Hopital's rule allows us to replace the limit problem
\[
\dfrac{\infty}{\infty}
\]
with another simpler problem to solve.
If \(\lim f(x) = \infty\) and \(\lim g(x) = \infty\) and if \(\lim \dfrac{f'(x)}{g'(x)} \) has a finite value \(L\), or is of the form \(\infty\) or \(-\infty\) then
\[
\lim \dfrac{f(x)}{g(x)} = \lim \dfrac{f'(x)}{g'(x)}
\]
In the above \(\lim\) stands for \(\lim_{x \to a} f(x)\), \(\lim_{x \to a^+} f(x)\), \(\lim_{x \to a^-} f(x)\), \(\lim_{x \to \infty} f(x)\) or \(\lim_{x \to -\infty} f(x)\).
Examples with Solutions
Example 1
Find the limit
\[
\lim_{x \to \infty} \dfrac{\ln x}{x}
\]
Solution to Example 1:
Since
\[
\lim_{x \to \infty} \ln x = \infty
\]
and
\[
\lim_{x \to \infty} x = \infty
\]
we have the indeterminate form
\[
\lim_{x \to \infty} \dfrac{\ln x}{x} = \dfrac{\infty}{\infty}
\]
The above L'Hopital's rule can be used to evaluate the given limit question as follows
\[
\lim_{x \to \infty} \dfrac{\ln x}{x} = \lim_{x \to \infty} \dfrac{(\ln x)'}{(x)'}
\]
Evaluate the derivatives in the numerator and the denominator
\[
= \lim_{x \to \infty} \dfrac{1/x}{1}
\]
Evaluate the limits in the numerator and denominator
\[
\lim_{x \to \infty} (1/x) = 0 \text{ and } \lim_{x \to \infty} 1 = 1
\]
We now evaluate the given limit
\[
\lim_{x \to \infty} \dfrac{\ln x}{x} = \lim_{x \to \infty} \dfrac{0}{1} = 0
\]
Example 2
Find the limit: \[ \lim_{x\to \infty} x e^{-x} \]
Solution to Example 2:
Note that
\[ \lim_{x\to \infty} x = \infty \]
and
\[ \lim_{x\to \infty} e^{-x} = 0 \]
This is the indeterminate form \( \infty \cdot 0 \). The idea is to convert it into to the indeterminate form \( \dfrac{\infty}{\infty} \) and use L'Hopital's theorem. Note that
\[ \lim_{x\to \infty} x e^{-x} = \lim_{x\to \infty} \dfrac{ x}{ e^x} = \dfrac{ \infty }{ \infty }\]
We apply the above L'Hopital's theorem
\[ = \lim_{x\to \infty} \dfrac{ (x)'}{ (e^x)'} = \lim_{x\to \infty} \dfrac{ 1 }{ e^x} = 0\]
Example 3
Find \[ \lim_{x\to \infty} ( 1 + 1/x)^x \]
Solution to Example 3:
Note that \( \lim_{x\to \infty} (1 + 1/x) = 1 \) and the above limit is given by
\[ \lim_{x\to \infty} ( 1 + 1/x)^x = 1^{\infty}\]
which is of the Indeterminate form \( 1^{\infty}\). If we let \( t = 1 / x \) the above limit may written as
\[ \lim_{x\to \infty} ( 1 + 1/x)^x = \lim_{t\to 0} ( 1 + t)^{1/t} \]
note that as \( x\to \infty \) , \( t\to 0 \)
Let \( y = ( 1 + t)^{1/t} \) and find the limit of \( \ln y \) as t approaches 0
\[ \ln y = \ln ( 1 + t)^{1/t} =(1 / t) \ln (1 + t) \]
The advantage of using \( \ln y \) is that
\[ \lim_{t\to 0} \ln y = \lim_{t\to 0} \dfrac {\ln (1 + t)}{t} = \dfrac{0}{0} \]
and the limit has the indeterminate form 0 / 0 and the first L'Hopital's rule can be applied
\[ \lim_{t\to 0} \ln y = \lim_{t\to 0} \dfrac {ln (1 + t)}{t} \]
\[ = \lim_{t\to 0} \dfrac{(ln (1 + t))'}{(t)'} = \lim_{t\to 0} \dfrac{1/(1+t)}{1} = 1 \]
Since the limit of \( \ln y = 1 \) the limit of \( y \) is \( e^1 = e \), hence
\[ \lim_{x\to \infty} ( 1 + 1/x)^x = e \]
Example 4
Find the limit \[ \lim_{x\to 0^+} ( 1 / x - 1 / \sin x )\]
Solution to Example 4:
Note that
\[ \lim_{x\to 0^+} ( 1 / x ) = + \infty \]
and
\[ \lim_{x\to 0^+} ( 1 / \sin x ) = + \infty \]
This limit has the indeterminate form \( \infty - \infty \) and has to be converted to another form by combining \( 1 / x - 1 / sin x \)
\[ \lim_{x\to 0^+} ( 1 / x - 1 / \sin x ) = \lim_{x\to 0^+} \dfrac{\sin x - x}{x \sin x} = \dfrac{0}{0} \]
We now have the indeterminate form 0 / 0 and we can use the L'Hopital's theorem.
\[ \lim_{x\to 0^+} \dfrac{\sin x - x}{x \sin x} = \lim_{x\to 0^+} \dfrac{(\sin x - x)'}{(x \sin x)'} = \lim_{x\to 0^+} \dfrac{\cos x - 1}{ \sin x + x \cos x} = \dfrac{0}{0} \]
We have again the indeterminate form 0 / 0 and use the L'Hopital's theorem one more time.
\[ = \lim_{x\to 0^+} \dfrac{(\cos x - 1)'}{ (\sin x + x \cos x)'} \]
\[ = \lim_{x\to 0^+} \dfrac{-\sin x}{ \cos x + \cos x - x \sin x } = \dfrac{0}{2} = 0\]
Example 5
Find the limit \[ \lim_{x\to 0^+} x^x \]
Solution to Example 5:
We have the indeterminate form \( 0^0 \). Let \( y = x^x \) and \( \ln y = \ln (x^x) = x \ln x \). Let us now find the limit of \( ln y \)
\[ \lim_{x\to 0^+} \ln y = \lim_{x\to 0^+} x \ln x = 0 \cdot \infty\]
The above limit has the indeterminate form \( 0 \cdot \infty\). We have convert it as follows
\[ \lim_{x\to 0^+} x \ln x = \lim_{x\to 0^+} \dfrac{\ln x}{1/x} = \dfrac{\infty}{\infty} \]
It now has the indeterminate form \( \dfrac{\infty}{\infty} \) and we can use the L'Hopital's theorem
\[ \lim_{x\to 0^+} \dfrac{\ln x}{1/x} = \lim_{x\to 0^+} \dfrac{(\ln x)'}{(1/x)'} \]
\[ = \lim_{x\to 0^+} \dfrac{1/x}{-1/x^2} \]
\[ = \lim_{x\to 0^+} - x = 0 \]
The limit of \( ln y = 0 \) and the limit of \( y = x^x \) is equal to
\[ \lim_{x\to 0^+} x^x = e^0 = 1 \]
Exercises
Find the limits
- \( \quad \lim_{x\to \infty} (\ln x)^{1/x} \)
- \( \quad \lim_{x\to \infty} (\ln x - \ln (1 + x)) \)
- \( \quad \lim_{x\to \infty} \dfrac{x}{e^x} \)
- \( \quad \lim_{x\to 0^+} x^{\sin x} \)
Solutions to Above Exercises
- 1
- 0
- 0
- 1
More Links on Limits
Calculus Tutorials and Problems
Limits of Absolute Value Functions Questions