Multiplication and Power of Matrices

Multiplication and Power of Matrices

\( \) \( \) \( \) \( \)

The multiplications of matrices are presented using examples and questions with solutions.

Multiplication of Rows and Columns Matrices

Let A be a row matrix of order 1 p with entries a 1j and B be a column matrix of order p 1 with entries b j1 . The multiplication of matrix A by matrix B is a 1 1 matrix defined by:
row column matrix multiplication
Example 1
Matrices A and B are defined by
row column example
Find the matrix A B.

Solution
row column multiplication solution to example

Multiplication of Matrices

We now apply the idea of multiplying a row by a column to multiplying more general matrices. Let A be an m p matrix and B be an p n matrix. Let R 1 , R 2 , ... R m be the rows of matrix A and C 1 , C 2 , ... C n be the columns of column B and write the two matrices as:
\( A = \begin{bmatrix} R_1 \\ R2 \\ . \\ .\\ R_m \end{bmatrix} \) and \( B = \begin{bmatrix} C_1 & C_2 &...& C_n \\ \end{bmatrix} \)
The product of the two matrices A and B is matrix C of order m n defined by
\[ C = A \cdot B = \begin{bmatrix} R_1 . C_1 & R_1 . C_2 & ... &R_1 . C_n \\ R_2 . C_1 & R_2 . C_2 & ... & R_2 . C_n \\ && ... & \\ && ... &\\ && ... &\\ R_m . C_1 & R_m . C_2 & ... &R_m . C_n \end{bmatrix} \]
and an entry \( {ij} \) of C is given by: \( c_{ij} = R_i \cdot C_j = \sum_{k=1}^{p} a_{ik} \times b_{kj} \)

Example 2
Find the product
\( \begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & - 2 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} \)

Solution
The matrix on the left has 2 rows R
1 and R 2 the matrix on the right has 2 columns C 1 and C 2 . Their product is given by:

\( \begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & - 2 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \cdot \begin{bmatrix} C_1 & C_2 \\ \end{bmatrix} = \begin{bmatrix} R_1\cdot C_1 & R_1 \cdot C_2 \\ R_2\cdot C_1 & R_2 \cdot C_2 \end{bmatrix} \)

\( = \begin{bmatrix} \begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} & \begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \\\\ \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} (2)(2)+(-1)(1)+(0)(-1) & (2)(-2) + (-2)(0) +(0)(2) \\ (1)(2)+(2)(1)+(2)(-1) & (1)(-2) + (2)(0) +(2)(2) \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ 2 & 2 \end{bmatrix} \)

Power of a Matrix

The power of a square matrix A is defined as follows:
\( A^0 = I \), \(I \) the identity matrix
\( A^n = A A .... A \) (n times) , where n is a positive integer.
If m and n are positive integers, then
\( A^m A^n = A^{m+n} \)
\( (A^m)^n = A^{m n} \)

Properties of Matrix Multiplication

  1. The product \( A B \) of two matrices \( A \) and \( B \) is defined if the number of columns of matrix \( A \) is equal to the number of rows of matrix \( B \).
  2. In general, the product of two matrices is not commutative: \( A B \ne B A \)
  3. Matrix multiplication is associative: \( (A B) C = A ( B C) \) if all the multiplications are defined.
  4. Matrix multiplication is distributive: \( A ( B + C ) = A B + A C \) and \( ( A + B ) C = A C + B C \)
  5. Multiplication by an identity matrix \( I \): \( A I = I A = A\) , this holds for square matrices of dimension n by n.
  6. For α and β real: \( \alpha ( A + B ) = \alpha A + \alpha B \)
  7. For α and β real: \( \alpha ( \beta A ) = \alpha \beta ( A ) \)
  8. For α and β real: \( (\alpha + \beta) A = \alpha A + \beta A \)
  9. For α real: \( \alpha ( A B ) = (\alpha A) B = A (\alpha B) \)

Questions on Multiplication of Matrices

  • Part 1
    A, B, C, D and E are matrices with the orders
    A: 2 3 , B: 3 5 , C: 5 1 , E: 1 5
    Which of the following are defined?
    1. \( A B \)
    2. \( A C \)
    3. \( C E \)
    4. \( E C \)
    5. \( (A B)C \)
  • Part 2
    A, B, C, D and E are matrices given by: \[ A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -2 & 1 \end{bmatrix} ,\quad B = \begin{bmatrix} -1 & 2 & 0 \\ 0 & -3 & 4 \\ -1 & -2 & 3 \end{bmatrix} ,\quad C = \begin{bmatrix} -3 & 2 & 9 & -5 & 7 \end{bmatrix} \\ D = \begin{bmatrix} -2 & 6 \\ -5 & 2 \end{bmatrix} ,\quad E = \begin{bmatrix} 3 \\ 5 \\ -11 \end{bmatrix} ,\quad F = \begin{bmatrix} -1 & 0 & 2 \\ -2 & -3 & 4 \\ 1 & 4 & -3 \end{bmatrix} \] Find if possible:
    1. \( A B \)
    2. \( B C \)
    3. \( A D \)
    4. \( E F \)
    5. \( F E \)
  • Part 3
    Find x and y if \[ \begin{bmatrix} x + y & -2 \\ x - y & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 12 & -8 \\ \end{bmatrix} \]
  • Part 4
    Calculate \[ \left( \begin{bmatrix} 2&0&0\\ 0&0&2\\ 0&2&0 \end{bmatrix} \right)^{10}\]

Solutions to the Above Questions

  • Part 1
    A, B, C, D and E are matrices with the orders
    A: 2 3 , B: 3 5 , C: 5 1 , E: 1 5
    Which of the following are defined?
    1. \( A B \) : defined because the number of columns of A is equal to the number of rows of B.
    2. \( A C \) : NOT defined, the number of columns of A is NOT equal to the number of rows of C.
    3. \( C E \) : defined because the number of columns of C is equal to the number of rows of E.
    4. \( E C \) : defined because the number of columns of E is equal to the number of rows of C.
    5. \( (A B)C \) : defined because AB is defined (see above) and the results is a matrix of order 2 by 5. The number of columns of AB is equal to 5 which is equal to the number of rows of C.
  • Part 2
    1. \( A B \) is defined and is given by
      \( A B = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 0 \\ 0 & -3 & 4 \\ -1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 3&-1&-2\\ -1&4&-5 \end{bmatrix}\)
    2. \( B C \) is not defined because the number of columns of B is not equal to the number of rows of C.
    3. \( A D \) is not defined because the number of columns of A is not equal to the number of rows of D.
    4. \( E F \) is not defined because the number of columns of E is not equal to the number of rows of F.
    5. \( F E \) is defined and is given by
      \( F E = \begin{bmatrix} -1 & 0 & 2 \\ -2 & -3 & 4 \\ 1 & 4 & -3 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ -11 \end{bmatrix} = \begin{bmatrix}-25\\ -65\\ 56 \end{bmatrix}\)
  • Part 3
    Find the product \( \begin{bmatrix} x + y & -2 \\ x - y & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 2x + 2y & -x-y+4 \\ 2x - 2y & -x+y-2 \end{bmatrix} \)
    then solve
    \( \begin{bmatrix} 2x + 2y & -x-y+4 \\ 2x - 2y & -x+y-2 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 12 & -8 \end{bmatrix} \)

    Two matrices are equal if they have the same order and their corresponding entries are equal, hence the system of equations
    \( 2x + 2y = 8 , -x-y+4 = 0 , 2x - 2y = 12 , -x+y-2 = - 8 \)
    Solve to obtain x = 5 and y = -1
  • Part 4
    Calculate Rewrite the matrix as follows: \[ \begin{bmatrix} 2&0&0\\ 0&0&2\\ 0&2&0 \end{bmatrix} = 2 \begin{bmatrix} 1&0&0\\ 0&0&1\\ 0&1&0 \end{bmatrix} \] Hence \[ \left( \begin{bmatrix} 2&0&0\\ 0&0&2\\ 0&2&0 \end{bmatrix} \right)^{10} = 2^{10} \left(\begin{bmatrix} 1&0&0\\ 0&0&1\\ 0&1&0 \end{bmatrix} \right)^{10} \] We note that the matrix \( \begin{bmatrix} 1&0&0\\ 0&0&1\\ 0&1&0 \end{bmatrix} \) is an Row Operations and elementary matrix corresponding to interchanging rows 2 and 3. So to raise the elementary matrix to the power 10, we start with the elementary and interchange rows 2 and 3 9 times which gives the original matrix \[ \begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} \] Hence \[ \left(\begin{bmatrix} 1&0&0\\ 0&0&1\\ 0&1&0 \end{bmatrix} \right)^{10} = 2^{10}\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} = \begin{bmatrix} 1024&0&0\\ 0&1024&0\\ 0&0&1024 \end{bmatrix} \]

More References and links

More To Explore