Multiplication and Power of Matrices

The multiplications of matrices are presented using examples and questions with solutions.

Multiplication of Rows and Columns Matrices

Let A be a row matrix of order 1 × p with entries a1j and B be a column matrix of order p × 1 with entries bj1. The multiplication of matrix A by matrix B is a 1 × 1 matrix defined by:
row column matrix multiplication
Example 1
Matrices A and B are defined by
row column example
Find the matrix A B.

Solution
row column multiplication solution to example

Multiplication of Matrices

We now apply the idea of multiplying a row by a column to multiplying more general matrices. Let A be an m × p matrix and B be an p × n matrix. Let R1, R2, ... Rm be the rows of matrix A and C1, C2, ... Cn be the columns of column B and write the two matrices as:
 column row multiplication
The product of the two matrices A and B is matrix C of order m × n defined by
 column row multiplication result

Example 2
\( \) \( \) \( \) \( \) Find the product
\( \begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & - 2 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} \)

Solution
The matrix on the left has 2 rows R1 and R2 the matrix on the right has 2 columns C1 and C2. Their product is given by:

\( \begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & - 2 \\ 1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \cdot \begin{bmatrix} C_1 & C_2 \\ \end{bmatrix} = \begin{bmatrix} R_1\cdot C_1 & R_1 \cdot C_2 \\ R_2\cdot C_1 & R_2 \cdot C_2 \end{bmatrix} \)

\( = \begin{bmatrix} \begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} & \begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \\\\ \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} (2)(2)+(-1)(1)+(0)(-1) & (2)(-2) + (-2)(0) +(0)(2) \\ (1)(2)+(2)(1)+(2)(-1) & (1)(-2) + (2)(0) +(2)(2) \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ 2 & 2 \end{bmatrix} \)

Power of a Matrix

The power of a square matrix A is defined as follows:
\( A^0 = I \), \(I \) the identity matrix
\( A^n = A A .... A \) (n times) , where n is a positive integer.
If m and n are positive integers, then
\( A^m A^n = A^{m+n} \)
\( (A^m)^n = A^{m n} \)

Properties of Matrix Multiplication

  1. The product \( A B \) of two matrices \( A \) and \( B \) is defined if the number of columns of matrix \( A \) is equal to the number of rows of matrix \( B \).
  2. In general, the product of two matrices is not commutative: \( A B \ne B A \)
  3. Matrix multiplication is associative: \( (A B) C = A ( B C) \) if all the multiplications are defined.
  4. Matrix multiplication is distributive: \( A ( B + C ) = A B + A C \) and \( ( A + B ) C = A C + B C \)
  5. Multiplication by an identity matrix \( I \): \( A I = I A = A\) , this holds for square matrices of dimension n by n.
  6. For ? and ? real: \( \alpha ( A + B ) = \alpha A + \alpha B \)
  7. For ? and ? real: \( \alpha ( \beta A ) = \alpha \beta ( A ) \)
  8. For ? and ? real: \( (\alpha + \beta) A = \alpha A + \beta A \)
  9. For ? real: \( \alpha ( A B ) = (\alpha A) B = A (\alpha B) \)

Questions on Multiplication of Matrices

Solutions to the Above Questions

More References and links